Politická ekonomie 2023, 71(5):496-517

Porovnanie algoritmov strojového učenia pre tvorbu predikčného modelu ceny bitcoinu

Milan Cibuµa, Michal Tkáč ORCID...
Podnikovohospodárska fakulta so sídlom v Koąiciach, Ekonomická univerzita v Bratislave, Slovenská republika

Comparison of Machine Learning Algorithms for Creation of a Bitcoin Price Prediction Model

With the advancement of machine learning tools, an increasing number of algorithms are being utilized for predicting not only traditional time series data related to financial markets but also those connected to cryptocurrencies. This paper aims to compare various machine learning algorithms used for prediction, in order to identify the one with the greatest practical potential for creating a prediction model of Bitcoin’s price as an investment asset. The analysis focuses on supervised learning algorithms, taking into account the nature of the task involving long time series datasets. The paper also describes the exact process of creating and setting up individual models and their parameters, explaining procedures for obtaining and editing datasets, and shows how to evaluate performance of these models. In addition to the analysis of the main subject of research, which is Bitcoin, the paper also uses an analysis of reference cryptocurrencies such as Ethereum, Litecoin and NEO to compare the resulting performances. The processes consisting of editing the analysed datasets, creating individual prediction models, training and testing the performance of models on historical data, and creating, debugging and implementing individual machine learning models were realised through coding in the Python program.

Keywords: Machine learning, Bitcoin, prediction model
JEL classification: C22, C55, C88

Received: July 21, 2022; Revised: May 24, 2023; Accepted: June 5, 2023; Prepublished online: October 9, 2023; Published: October 31, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Cibuµa, M., & Tkáč, M. (2023). Comparison of Machine Learning Algorithms for Creation of a Bitcoin Price Prediction Model. Politická ekonomie71(5), 496-517
Download citation

References

  1. Abu Bakar, N., Rosbi, S., Uzaki, K. (2019). Forecasting cryptocurrency price movement using moving average method: A case study of bitcoin cash. International Journal of Advanced Research, 7(12), 609-614, https://doi.org/10.21474/ijar01/10188 Go to original source...
  2. Akyildirim, E., Goncu, A., Sensoy, A. (2021). Prediction of cryptocurrency returns using machine learning. Annals of Operations Research, 297, 3-36, https://doi.org/10.1007/s10479-020-03575-y Go to original source...
  3. Alahmari, S. A. (2019). Using Machine Learning ARIMA to Predict the Price of Cryptocurrencies. The ISC International Journal of Information Security, 11(3), 139-144.
  4. Chen, Z., Li, C., Sun, W. (2020). Bitcoin price prediction using machine learning: An approach to sample dimension engineering. Journal of Computational and Applied Mathematics, 365, 112395, https://doi.org/10.1016/j.cam.2019.112395 Go to original source...
  5. CryptoDataDownload (2022). BINANCE EXCHANGE DATA. CryptoDataDownload [online]. [cit. 2022-07-12]. Dostupné z: https://www.cryptodatadownload.com/data/binance/
  6. Di Persio, L., Honchar, O. (2016). Artificial Neural Networks architectures for stock price prediction: Comparisons and applications. International Journal of Circuits, Systems and Signal Processing, 10, 403-413.
  7. Ding, X., Zhang, Y., Liu, T., et al. (2015). Deep learning for event-driven stock prediction. Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015), 2327-2333. Dostupné z: https://www.ijcai.org/Proceedings/15/Papers/329.pdf
  8. Drobetz, W., Otto, T. (2021). Empirical asset pricing via machine learning: evidence from the European stock market. Journal of Asset Management, 22, 507-538, https://doi.org/10.2139/ssrn.3640631 Go to original source...
  9. Facebook (2017). PROPHET Forecasting at scale. Facebook Open Source [online]. [cit. 2022-07-12]. Dostupné z: https://facebook.github.io/prophet/
  10. Gao, P., Zhang, R., Yang, X. (2020). The application of stock index price prediction with neural network. Mathematical and Computational Applications, 25(3), 53, https://doi.org/10.3390/mca25030053 Go to original source...
  11. Georgoula, I., Pournarakis, D., Bilanakos, C., et al. (2015). Using time-series and sentiment analysis to detect the determinants of bitcoin prices. Proceedings of the Mediterranean Conference on Information Systems (MCIS) [cit. 2022-07-12]. Dostupné z: https://aisel.aisnet.org/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1017&context=mcis2015 Go to original source...
  12. Hiransha, M., Gopalakrishnan, E. A., Menon, V. K., et al. (2018). NSE stock market prediction using deep-learning models. Procedia Computer Science, 132, 1351-1362, https://doi.org/10.1016/j.procs.2018.05.050 Go to original source...
  13. Khedr, A. M., Arif, I., El-Bannany, M., et al. (2021). Cryptocurrency price prediction using traditional statistical and machine-learning techniques: A survey. Intelligent Systems in Accounting, Finance and Management, 28(1), 3-34, https://doi.org/10.1002/isaf.1488 Go to original source...
  14. Kim, S., Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32(3), 669-679, https://doi.org/10.1016/j.ijforecast.2015.12.003 Go to original source...
  15. Kjærland, F., Khazal, A., Krogstad, E. A., et al. (2018). An analysis of bitcoin's price dynamics. Journal of Risk and Financial Management, 11(4), 63, https://doi.org/10.3390/jrfm11040063 Go to original source...
  16. Li, Y., Zheng, Z., Dai, H. N. (2020). Enhancing bitcoin price fluctuation prediction using attentive LSTM and embedding network. Applied Sciences, 10(14), 4872, https://doi.org/10.3390/app10144872 Go to original source...
  17. Makridakis, S., Spiliotis, E., Assimakopoulos, V. (2018). Statistical and Machine Learning forecasting methods: Concerns and ways forward. PloS ONE, 13(3), e0194889, https://doi.org/10.1371/journal.pone.0194889 Go to original source...
  18. Matta, M., Lunesu, I., Marchesi, M. (2015). The Predictor Impact of Web Search Media on Bitcoin Trading Volumes. Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K), 1(1), 620-626), https://doi.org/10.5220/0005618606200626 Go to original source...
  19. McNally, S., Roche, J., Caton, S. (2018). Predicting the price of bitcoin using machine learning. Proceedings of the 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), 339-343, https://doi.org/10.1109/PDP2018.2018.00060 Go to original source...
  20. Menculini, L., Marini, A., Proietti, M., et al. (2021). Comparing prophet and deep learning to ARIMA in forecasting wholesale food prices. Forecasting, 3(3), 644-662, https://doi.org/10.3390/forecast3030040 Go to original source...
  21. Poongodi, M., Sharma, A., Vijayakumar, V., et al. (2020). Prediction of the price of Ethereum blockchain cryptocurrency in an industrial finance system. Computers & Electrical Engineering, 81, 106527, https://doi.org/10.1016/j.compeleceng.2019.106527 Go to original source...
  22. Ren, Y.-S., Ma, C.-Q., Kong, X.-L., et al. (2022). Past, present, and future of the application of machine learning in cryptocurrency research (2022). Research in International Business and Finance, 63, 101799, https://doi.org/10.1016/j.ribaf.2022.101799 Go to original source...
  23. Roy, S., Nanjiba, S., Chakrabarty, A. (2018). Bitcoin price forecasting using time series analysis. Proceedings of the 21st International Conference of Computer and Information Technology (ICCIT), 1-5, https://doi.org/10.1109/iccitechn.2018.8631923 Go to original source...
  24. Scikit-learn (2022). Sklearn.preprocessing.PowerTransformer. Scikit-learn [online]. [cit. 2022-07-12]. Dostupné z: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html
  25. Sovbetov, Y. (2018). Factors influencing cryptocurrency prices: Evidence from bitcoin, ethereum, dash, litcoin, and monero. Journal of Economics and Financial Analysis, 2(2), 1-27.
  26. Xiong, R., Nichols, E. P., Shen, Y. (2016). Deep Learning Stock Volatility with Google Domestic Trends. Computational Finance, https://doi.org/10.48550/arXiv.1512.04916 Go to original source...
  27. Zhang, G. P., Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160(2), 501-514, https://doi.org/10.1016/j.ejor.2003.08.037 Go to original source...
  28. Zheng, A., Casari, A. (2018). Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists. Sebastopol: O'Reilly Media. ISBN 978-1491953242. Go to original source...
  29. Zheng, S. (2011). Gradient descent algorithms for quantile regression with smooth approximation. International Journal of Machine Learning and Cybernetics, 2, 191-207, https://doi.org/10.1007/s13042-011-0031-2 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.