Politická ekonomie 2022, 70(3):265-287 | DOI: 10.18267/j.polek.1353

Predikční schopnost Altmanova Z-skóre evropských soukromých společností

Svatopluk Kapounek ORCID...a, Jan Hanousekb, František Bílýa
a Mendelova univerzita v Brně, Provozně ekonomická fakulta, Ústav financí, Brno, Česká republika
b CERGE-EI, společné pracoviště UK v Praze a NHÚ AV ČR, v. v. i., Praha, Česká republika

Predictive Ability of Altman Z-score of European Private Companies

The paper investigates the relationship between the financial distress of European private companies identified by the Altman Z-score and real bankruptcy. We extend the traditional Z-score with the asymmetric effect of economic activity. Our results show higher forecasting performance of the Altman Z-score of large companies in a three-year projection. We argue that our results differ from Altman (1968) because of specific market conditions in Europe that enable prolongation of activity after financial distress is identified. We also emphasize the role of liquidity, size, performance and indebtedness in increasing financial distress forecasting performance. Finally, we extend our prediction model with selected indicators of quality and development of the institutional environment.

Keywords: Firm bankruptcy, financial distress, Altman Z-score, institutional environment
JEL classification: C23, G32, G33

Vloženo: 16. prosinec 2020; Revidováno: 11. únor 2022; Přijato: 16. únor 2022; Zveřejněno: 4. červenec 2022  Zobrazit citaci

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kapounek, S., Hanousek, J., & Bílý, F. (2022). Predikční schopnost Altmanova Z-skóre evropských soukromých společností. Politická ekonomie70(3), 265-287. doi: 10.18267/j.polek.1353
Stáhnout citaci

Reference

  1. Alfaro, L., Asis, G., Chari, A., et al. (2019). Corporate debt, firm size and financial fragility in emerging markets. Journal of International Economics, 118(5), 1-19, https://doi.org/10.1016/j.jinteco.2019.01.002 Přejít k původnímu zdroji...
  2. Almamy, J., Aston, J., Ngwa, L. N. (2016). An evaluation of Altman's Z-score using cash flow ratio to predict corporate failure amid the recent financial crisis: Evidence from the UK. Journal of Corporate Finance, 36(2), 278-285, https://doi.org/10.1016/j.jcorpfin.2015.12.009 Přejít k původnímu zdroji...
  3. Altman, E. I. (1968). Financial ratios, discriminant analysis and the predictionof corporate bankruptcy. The Journal of Finance, 23(4), 589-609, https://doi.org/10.1111/j.1540-6261.1968.tb00843.x Přejít k původnímu zdroji...
  4. Altman, E. I. (1984). The success of business failure prediction models: An international survey. Journal of Banking & Finance, 8(2), 171-198, https://doi.org/10.1016/0378-4266(84)90003-7 Přejít k původnímu zdroji...
  5. Altman, E. I. (1993). Corporate Financial Distress and Bankruptcy. 2nd edition. New York: John Wiley & Sons. ISBN 978-0471552536.
  6. Altman, E. I. (2005). An emerging market credit scoring system for corporate bonds. Emerging markets review, 6(4), 311-323, https://doi.org/10.1016/j.ememar.2005.09.007 Přejít k původnímu zdroji...
  7. Altman, E. I. (2013). Predicting financial distress of companies: revisiting the Z-score and ZETA® models. In: Handbook of research methods and applications in empirical finance. Cheltenham: Edward Elgar Publishing, 428-456. ISBN 978-0857936080. Přejít k původnímu zdroji...
  8. Altman, E. I., Haldeman, R. G., Narayanan, P. (1977) ZETA™ analysis A new model to identify bankruptcy risk of corporations. Journal of Banking & Finance, 1(1), 29-54, https://doi.org/10.1016/0378-4266(77)90017-6 Přejít k původnímu zdroji...
  9. Altman, E.I., Sabato, G., Wilson, N. (2010). The value of non-financial information in small and medium-sized enterprise risk management. Journal of Credit Risk, 6(2), 1-33, https://doi.org/10.21314/JCR.2010.110 Přejít k původnímu zdroji...
  10. Aysun, U. (2014). Bankruptcy resolution capacity and economic fluctuations. Journal of Macroeconomics, 40(6), 387-399, https://doi.org/10.1016/j.jmacro.2014.02.001 Přejít k původnímu zdroji...
  11. Beerman, K. (1976). Possible ways to predict capital losses with annual financial statements. University of Düsseldorf Working Paper.
  12. Ciampi, F., Gordini, N. (2013). Small Enterprise Default Prediction Modeling through Artificial Neural Networks: An Empirical Analysis of Italian Small Enterprises. Journal of Small Business Management, 51(1), 23-45, https://doi.org/10.1111/j.1540-627X.2012.00376.x Přejít k původnímu zdroji...
  13. De Jong, A., Kabir, R., Nguyen, T. T. (2008). Capital structure around the world: The roles of firm-and country-specific determinants. Journal of Banking & Finance, 32(9), 1954-1969, https://doi.org/10.1016/j.jbankfin.2007.12.034 Přejít k původnímu zdroji...
  14. Desai, M., Montes, E. D. (1982). A macroeconomic model of bankruptcies in the British economy, 1945-1980. British Review of Economic Issues, 4(10), 1-14.
  15. Fidrmuc, J., Kapounek, S., Siddiqui, M. (2017). Which Institutions are Important for Firms Performance? Evidence from Bayesian Model Averaging Analysis. Panoeconomicus, 64(4), 383-400, https://doi.org/10.2298/PAN151015031F Přejít k původnímu zdroji...
  16. Gelman, A., Hill, J. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge: Cambridge University Press. ISBN 978-0-521-86706-1. Přejít k původnímu zdroji...
  17. Hackbarth, D., Miao, J., Morellec, E. (2006). Capital structure, credit risk, and macroeconomic conditions. Journal of Financial Economics, 82(3), 519-550, https://doi.org/10.1016/j.jfineco.2005.10.003 Přejít k původnímu zdroji...
  18. Higson, C., Holly, S., Kattuman, P., et al. (2004). The Business Cycle, Macroeconomic Shocks and the Cross-Section: The Growth of UK Quoted Companies. Economica, 71(5): 299-318, Přejít k původnímu zdroji...
  19. https://doi.org/10.1111/j.0013-0427.2004.00371.x Přejít k původnímu zdroji...
  20. Inekwe, J. N., Jin, Y., Valenzuela, M. R. (2019). Financial conditions and economic growth. International Review of Economics & Finance, 61(5), 128-140, https://doi.org/10.1016/j.iref.2019.02.001 Přejít k původnímu zdroji...
  21. Kahl, M. (2002). Economic Distress, Financial Distress, and Dynamic Liquidation. The Journal of Finance, 57(1), 135-168, https://doi.org/10.1111/1540-6261.00418 Přejít k původnímu zdroji...
  22. Kapounek, S., Kučerová, Z., Fidrmuc, J. (2017). Lending Conditions in EU: The Role of Credit Demand and Supply. Economic Modelling, 67(12), 285-293, https://doi.org/10.1016/j.econmod.2017.01.003 Přejít k původnímu zdroji...
  23. Liang, D., Tsai, C., Wu, H. (2015). The effect of feature selection on financial distress prediction. Knowledge-Based Systems, 73(1), 289-297, https://doi.org/10.1016/j.knosys.2014.10.010 Přejít k původnímu zdroji...
  24. Liang, D., Lu, C., Tsai, C., et al. (2016). Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study. European Journal of Operational Research, 252(2), 561-572, https://doi.org/10.1016/j.ejor.2016.01.012 Přejít k původnímu zdroji...
  25. Mare, D. S. (2015). Contribution of macroeconomic factors to the prediction of small bank failures. Journal of International Financial Markets, Institutions and Money, 39(11), 25-39, https://doi.org/10.1016/j.intfin.2015.05.005 Přejít k původnímu zdroji...
  26. Nam, C. W., Kim, T. S., Park, N. J., et al. (2008). Bankruptcy prediction using a discrete-time duration model incorporating temporal and macroeconomic dependencies. Journal of Forecasting, 27(6), 493-506, https://doi.org/10.1002/for.985 Přejít k původnímu zdroji...
  27. Ninh, B. P. V., Do Thanh, T., Hong, D. V. (2018). Financial distress and bankruptcy prediction: An appropriate model for listed firms in Vietnam. Economic Systems, 42(4), 616-624, https://doi.org/10.1016/j.ecosys.2018.05.002 Přejít k původnímu zdroji...
  28. Ohlson, J. A. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of accounting research, 18(1), 109-131, https://doi.org/10.2307/2490395 Přejít k původnímu zdroji...
  29. Olson, D. L., Delen, D., Meng, Y. (2012). Comparative analysis of data mining methods for bankruptcy prediction. Decision Support Systems, 52(2), 464-473, https://doi.org/10.1016/j.dss.2011.10.007 Přejít k původnímu zdroji...
  30. Rose, P. S., Andrews, W. T., Giroux, G. A. (1982). Predicting business failure: A macroeconomic perspective. Journal of Accounting, Auditing and Finance, 6(1), 20-31.
  31. Shleifer, A., Vishny, R. W. (1992). Liquidation Values and Debt Capacity: A Market Equilibrium Approach. The Journal of Finance, 47(4), 1343-1366, https://doi.org/10.2307/2328943 Přejít k původnímu zdroji...
  32. Shumway, T. (2001). Forecasting Bankruptcy More Accurately: A Simple Hazard Model. The Journal of Business, 74(1), 101-124, https://www.jstor.org/stable/10.1086/209665 Přejít k původnímu zdroji...
  33. Taffler, R. J. (1982). Forecasting company failure in the UK using discriminant analysis and financial ratio data. Journal of the Royal Statistical Society: Series A, 145(3), 342-358, https://doi.org/10.2307/2981867 Přejít k původnímu zdroji...
  34. Tian, S., Yu, Y., Guo, H. (2015). Variable selection and corporate bankruptcy forecasts. Journal of Banking & Finance, 52(3), 89-100, https://doi.org/10.1016/j.jbankfin.2014.12.003 Přejít k původnímu zdroji...
  35. Tinoco, M. H., Holmes, P., Wilson, N. (2018). Polytomous response financial distress models: The role of accounting, market and macroeconomic variables. International Review of Financial Analysis, 59(10), 276-289, https://doi.org/10.1016/j.irfa.2018.03.017 Přejít k původnímu zdroji...
  36. Wadhwani, S. B. (1986). Inflation, Bankruptcy, Default Premia and the Stock Market. The Economic Journal, 96(381), 120-138, https://doi.org/10.2307/2233429 Přejít k původnímu zdroji...
  37. Xu, M., Zhang, C. (2008). Bankruptcy prediction: the case of Japanese listed companies. Review of Accounting Studies, 14, 534-558, https://doi.org/10.1007/s11142-008-9080-5 Přejít k původnímu zdroji...
  38. Zelenkov, Y., Fedorova, E., Chekrizov, D. (2017). Two-step classification method based on genetic algorithm for bankruptcy forecasting. Expert Systems with Applications, 88(12), 393-401, https://doi.org/10.1016/j.eswa.2017.07.025 Přejít k původnímu zdroji...
  39. Zhou, L., Lu, D., Fujita, H. (2015). The performance of corporate financial distress prediction models with features selection guided by domain knowledge and data mining approaches. Knowledge-Based Systems, 85(9), 52-61, https://doi.org/10.1016/j.knosys.2015.04.017 Přejít k původnímu zdroji...
  40. Zmijewski, M. E. (1984). Methodological Issues Related to the Estimation of Financial Distress Prediction Models. Journal of Accounting research, 59-82, https://doi.org/10.2307/2490859 Přejít k původnímu zdroji...

Tento článek je publikován v režimu tzv. otevřeného přístupu k vědeckým informacím (Open Access), který je distribuován pod licencí Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), která umožňuje nekomerční distribuci, reprodukci a změny, pokud je původní dílo řádně ocitováno. Není povolena distribuce, reprodukce nebo změna, která není v souladu s podmínkami této licence.