Politická ekonomie 2018, 66(6):689-708 | DOI: 10.18267/j.polek.1226

Využitie skóringových modelov pri predikcii defaultu ekonomických subjektov v Slovenskej republike

Matúš Mihalovič
Matúš Mihalovič (matus.mihalovic@gmail.com), Ekonomická univerzita Bratislava, Podnikovohospodárska fakulta Košice

Applicability of Scoring Models in Firms' Default Prediction. The Case of Slovakia

Bankruptcy prediction has long been regarded as a critical topic within the academic and banking community. To the best of our knowledge, no previous study in the Slovak Republic has attempted to develop a bankruptcy prediction model putting together statistical and artificial intelligence approaches performed on a such an amount of data. This paper seeks to fill this gap. Our aim is to develop a hybrid bankruptcy prediction model using a genetic algorithm in the process of training a neural network (GA-NN). The research data set comprises a balanced sample of both healthy and bankrupt firms operating in Slovakia in the period from 2014 to 2017. Financial information regarding a firm's financial situation are acquired from the Finstat database, which stores annual reports. For the purpose of comparing the classification accuracy of the proposed GA-NN model, two more models are constructed, namely BP-NN (back-propagation neural network model) as well as MDA (multiple discrimination model). The results gained by utilizing these models suggest the superiority of the developed GA-NN model to both BP-NN and MDA models in terms of prediction performance.

Keywords: bankruptcy prediction, genetic algorithms, hybrid classifier, neural networks, pre-diction performance, scoring model, GA-NN model, default, decision trees
JEL classification: C45, C53, G32, G33, M21

Vloženo: 18. prosinec 2017; Přijato: 18. září 2018; Zveřejněno: 1. prosinec 2018  Zobrazit citaci

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Mihalovič, M. (2018). Využitie skóringových modelov pri predikcii defaultu ekonomických subjektov v Slovenskej republike. Politická ekonomie66(6), 689-708. doi: 10.18267/j.polek.1226
Stáhnout citaci

Reference

  1. Acosta-González, E., Fernández-Rodríguez, F. (2014). Forecasting Financial Failure of Firms Via Genetic Algorithms. Computational Economics, 43(2), 133-157, https://doi.org/10.1007/s10614-013-9392-9 Přejít k původnímu zdroji...
  2. Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23(4), 589-609, https://doi.org/10.1111/j.1540-6261.1968.tb00843.x Přejít k původnímu zdroji...
  3. Back, B., Laitinen, T., Sere, K. (1996). Neural Networks and Genetic Algorithms for Bankruptcy Predictions. Expert Systems with Applications, 11(4), 407-413, https://doi.org/10.1016/S0957-4174(96)00055-3 Přejít k původnímu zdroji...
  4. Brabazon, A., Keenan, P. B. (2004). A Hybrid Genetic Model for the Prediction of Corporate Failure. Computational Management Science, 1(3), 293-310, https://doi.org/10.1007/s10287-004-0017-6 Přejít k původnímu zdroji...
  5. Corder, G. W., Foreman, D. I. (2014). Nonparametric Statistics. A Step-by-Step Approach. Hoboken: John Wiley & Sons. ISBN 978-1-118-84031-3.
  6. Delina, R., Packová, M. (2013). Validácia predikcných bankrotových modelov v podmienkach SR. E+ M Ekonomie a Management, 16(3), 101-112.
  7. Du, K. L., Swamy, N. S. (2014). Neural Networks and Statistical Learning. London: Springer-Verlag. ISBN 978-14-471-5571-3. Přejít k původnímu zdroji...
  8. du Jardin, P. (2016). A Two-stage Classification Technique for Bankruptcy Prediction. European Journal of Operational Research, 254(1), 236-252, https://doi.org/10.1016/j.ejor.2016.03.008 Přejít k původnímu zdroji...
  9. Fidrmuc, J., Hainz, C. (2010). Default Rates in the Loan Market for SMEs: Evidence from Slovakia. Economic Systems, 34(2), 133-147, https://doi.org/10.1016/j.ecosys.2009.10.002 Přejít k původnímu zdroji...
  10. Fedorova, E., Gilenko, E., Dovzhenko, S. (2013). Bankruptcy Prediction for Russian Companies: Application of Combined Classifiers. Expert Systems with Applications, 40(18), 7285-7293, https://doi.org/10.1016/j.eswa.2013.07.032 Přejít k původnímu zdroji...
  11. Finlay, S. (2009). Are We Modelling the Right Thing? The Impact of Incorrect Problem Specification in Credit Scoring. Expert Systems with Applications, 36(5), 9065-9071, https://doi.org/10.1016/j.eswa.2008.12.016 Přejít k původnímu zdroji...
  12. Gavurova, B., Packova, M., Misankova, M., Smrcka, L. (2017). Predictive Potential and Risks of Selected Bankruptcy Prediction Models in the Slovak Business Environment. Journal of Business Economics and Management, 18(6), 1156-1173, https://doi.org/10.3846/16111699.2017.1400461 Přejít k původnímu zdroji...
  13. Gordini, N. (2014). A Genetic Algorithm Approach for SMEs Bankruptcy Prediction: Empirical Evidence from Italy. Expert Systems with Applications, 41(14), 6433-6445, https://doi.org/10.1016/j.eswa.2014.04.026 Přejít k původnímu zdroji...
  14. Gorzałczany, M. B., Rudziński, F. (2016). A Multi-objective Genetic Optimization for Fast, Fuzzy Rule-based Credit Classification with Balanced Accuracy and Interpretability. Applied Soft Computing, 40, 206-220, https://doi.org/10.1016/j.asoc.2015.11.037 Přejít k původnímu zdroji...
  15. Gunther, F., Fritsch, S. (2010). Neuralnet. Training of Neural Networks. The R Journal, 2(1), 30-38. Přejít k původnímu zdroji...
  16. Hair, J. F. a kol. (2014). Multivariate Data Analysis. Essex: Pearson Education Limited. ISBN 978-12-9202-190-4.
  17. Haupt, R. L., Haupt, S. E. (2004). Practical Genetic Algorithms. 2. vydanie. New Jersey: John Wiley & Sons. ISBN 0-471-45565-2.
  18. Kovacova, M., Kliestik, T. (2017). Logit and Probit application for the Prediction of Bankruptcy in Slovak Companies. Equilibrium. Quarterly Journal of Economics and Economic Policy, 12(4), 775-791, https://doi.org/10.24136/eq.v12i4.40 Přejít k původnímu zdroji...
  19. Li, H., Sun, J., & Wu, J. (2010). Predicting Business Failure Using Classification and Regression Tree: An Empirical Comparison with Popular Classical Statistical Methods and Top Classification Mining Methods. Expert Systems with Applications, 37(8), 5895-5904, https://doi.org/10.1016/j.eswa.2010.02.016 Přejít k původnímu zdroji...
  20. Liang, D., Lu, C. C., Tsai, C. F., Shih, G. A. (2016). Financial Ratios and Corporate Governance Indicators in Bankruptcy Prediction: A Comprehensive Study. European Journal of Operational Research, 252(2), 561-572, https://doi.org/10.1016/j.ejor.2016.01.012 Přejít k původnímu zdroji...
  21. Marques, A. I., García, V., Sánchez, J. S. (2013). A Literature Review on the Application of Evolutionary Computing to Credit Scoring. Journal of the Operational Research Society, 64(9), 1384-1399, https://doi.org/10.1057/jors.2012.145 Přejít k původnímu zdroji...
  22. Mihalovič, M. (2015). The Assessment of Corporate Financial Performance Via Discriminant Analysis. Acta oeconomica Cassoviensia : Scientific Journal, 8(1), 57-69.
  23. Min, S. H., Lee, J., Han, I. (2006). Hybrid Genetic Algorithms and Support Vector Machines for Bankruptcy Prediction. Expert Systems with Applications, 31(3), 652-660, https://doi.org/10.1016/j.eswa.2005.09.070 Přejít k původnímu zdroji...
  24. Odom, M. D., Sharda, R. (1990). A Neural Network Model for Bankruptcy Prediction. In Neural Networks, 1990., 1990 IJCNN International Joint Conference on (pp. 163-168). IEEE. https://doi.org/10.1109/IJCNN.1990.137710 Přejít k původnímu zdroji...
  25. Ohlson, J. A. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18(1), 109-131, https://doi.org/10.2307/2490395 Přejít k původnímu zdroji...
  26. Olson, D. L., Delen, D., Meng, Y. (2012). Comparative Analysis of Data Mining Methods for Bankruptcy Prediction. Decision Support Systems, 52(2), 464-473, https://doi.org/10.1016/j.dss.2011.10.007 Přejít k původnímu zdroji...
  27. Oreski, S., Oreski, G. (2014). Genetic Algorithm-based Heuristic for Feature Selection in Credit Risk Assessment. Expert Systems with Applications, 41(4), 2052-2064, https://doi.org/10.1016/j.eswa.2013.09.004 Přejít k původnímu zdroji...
  28. Ramachandran, K. M., Tsokos, CH. P. (2009). Mathematical Statistics with Applications. London: Elsevier Academic Press. ISBN 978-0-12-374848-5.
  29. Shin, K. S., Lee, Y. J. (2002). A Genetic Algorithm Application in Bankruptcy Prediction Modeling. Expert Systems with Applications, 23(3), 321-328, https://doi.org/10.1016/S0957-4174(02)00051-9 Přejít k původnímu zdroji...
  30. Sun, J., Li, H., Huang, Q. H., He, K. Y. (2014). Predicting Financial Distress and Corporate Failure: A Review from the State-of-the-art Definitions, Modeling, Sampling, and Featuring Approaches. Knowledge-Based Systems, 57, 41-56, https://doi.org/10.1016/j.knosys.2013.12.006 Přejít k původnímu zdroji...
  31. Zięba, M., Tomczak, S. K., Tomczak, J. M. (2016). Ensemble Boosted Trees with Synthetic Features Generation in Application to Bankruptcy Prediction. Expert Systems with Applications, 58, 93-101, https://doi.org/10.1016/j.eswa.2016.04.001 Přejít k původnímu zdroji...

Tento článek je publikován v režimu tzv. otevřeného přístupu k vědeckým informacím (Open Access), který je distribuován pod licencí Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), která umožňuje nekomerční distribuci, reprodukci a změny, pokud je původní dílo řádně ocitováno. Není povolena distribuce, reprodukce nebo změna, která není v souladu s podmínkami této licence.