Politická ekonomie 2017, 65(2):161-178 | DOI: 10.18267/j.polek.1134

Posouzení modelů odhadu tržního rizika s využitím DEA přístupu

Aleš Kresta, Tomáš Tichý, Mehdi Toloo
Aleš Kresta (ales.kresta@vsb.cz), Tomáš Tichý (tomas.tichy@vsb.cz), Mehdi Toloo (mehdi.toloo@vsb.cz), Vysoká škola báňská - Technická univerzita Ostrava, Ekonomická fakulta

Examination of Market Risk Estimation Models via DEA Approach Modelling

Measuring and managing of financial risks is an essential part of the management of financial institutions. The appropriate risk management should lead to an efficient allocation of available funds. Approaches based on Value at Risk measure have been used as a means for measuring market risk since the late 20th century, although regulators newly suggest to apply more complex method of Expected Shortfall. While evaluating models for market risk estimation based on Value at Risk is relatively simple and involves so-called backtesting procedure, in the case of Expected Shortfall we cannot apply similar procedure. In this article we therefore focus on an alternative method for comprehensive evaluation of VaR models at various significance levels by means of data envelopment analysis (DEA). This approach should lead to the adoption of the model which is also suitable in terms of the Expected Shortfall criterion. Based on the illustrative results from the US stock market we conclude that NIG model and historical simulation should be preferred to normal distribution and GARCH model. We can also recommend to estimate the parameters from the period slightly shorter than two years.

Keywords: model quality, data envelopment analysis, market risk, Value at Risk, historical simu-lation, NIG
JEL classification: C52, C58, G21

Published: April 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kresta, A., Tichý, T., & Toloo, M. (2017). Examination of Market Risk Estimation Models via DEA Approach Modelling. Politická ekonomie65(2), 161-178. doi: 10.18267/j.polek.1134
Download citation

References

  1. Alexander, C., Sheedy, E. (2008). Developing a stress Testing Framework Based on Market Risk Models. Journal of Banking Finance, 32(10), 2220-2236, https://doi.org/10.1016/j.jbankfin.2007.12.041 Go to original source...
  2. Amin, G. R., Toloo, m. (2004). A Polynomial-Time Algorithm for Finding Epsilon in DEA Models. Computer and Operations Research, 31(5), 803-805, https://doi.org/10.1016/s0305-0548(03)00072-8 Go to original source...
  3. Artzner, P., Delbaen, F., Eber, J. M., Heath, D. (1999). Coherent Measures of Risk. Mathematical Finance, 9(3), 203-228. Go to original source...
  4. BCBS (1998). Amendment to the Capital Accord to Incorporate Market Risks. January 1996, updated April 1998. Basel: Basel Committee on Banking Supervision, Bank for International Settlements.
  5. BCBS (2013). Fundamental Review of the Trading Book: A Revised Market Risk Framework. Basel: Basel Committee on Banking Supervision, Bank for International Settlements.
  6. Bertoin, J. (1998). Lévy Processes. Cambridge: Cambridge University Press. ISBN 978-0521646321.
  7. Berkowitz, J., O'Brien, J. (2002). How Accurate are Value-at-risk Models at Commercial Banks? Journal of Finance, 57(3), 1093-1111, https://doi.org/10.1111/1540-6261.00455 Go to original source...
  8. Berkowitz, J., Christoffersen, P. F., Pelletier, D. (2011). Evaluating Value-at-Risk Models with Desk-level Data. Management Science, 57(12), 2213-2227, https://doi.org/10.1287/mnsc.1080.0964 Go to original source...
  9. Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31(3), 307-327, https://doi.org/10.1016/0304-4076(86)90063-1 Go to original source...
  10. Brandolini, D., Golucci, S. (2012). Backtesting Value-at-risk: a Comparison Between Filtered Bootstrap and Historical Simulation. Journal of Risk Model Validation, 6(4): 3-16, https://doi.org/10.21314/jrmv.2012.094 Go to original source...
  11. Cont, R., Tankov, P. (2004). Financial Modelling with Jump Processes. Boca Raton: Chapman & Hall/CRC press. ISBN 978-1584884132. Go to original source...
  12. Du, Z., Escanciano, J. C. (2015). Backtesting Expected Shortfall: Accounting for Tail Risk, CAEPR Working Paper, Indiana University. Go to original source...
  13. Emmer, S., Kratz, M., Tasche, D. (2015). What is the Best Risk Measure in Practice? A Comparison of Standard Measures. Journal of Risk, 18 (2), 31-60, https://doi.org/10.21314/jor.2015.318 Go to original source...
  14. Escanciano, J. C., Olmo, J. (2010). Backtesting Parametric Value-at-Risk with Estimation Risk. Journal of Business & Economic Statistics, 28(1), 36-51, https://doi.org/10.1198/jbes.2009.07063 Go to original source...
  15. Fama, E. F. (1965). The Behaviour of Stock Market Prices. Journal of Business, 38(1), 34-105. Go to original source...
  16. Hull, J. C. (2013). Risk Management and Financial Institutions. 3rd ed. Chichester: Wiley. ISBN 978-1118269039.
  17. Charnes, A., Cooper, W. (1962). Programming with Linear Fractional Functionals. Naval Research Logistics Quarterly, 9(3-4), 181-186, https://doi.org/10.1002/nav.3800090303 Go to original source...
  18. Charnes, A., Cooper, W., Rhodes, E. (1978). Measuring the Efficiency of Decision Making Units. European Journal of Operational Research, 2(6), 429-444, https://doi.org/10.1016/0377-2217(78)90138-8 Go to original source...
  19. Christoffersen, P. F. (1998). Evaluating Interval Forecasts. International Economic Review, 39(4), 841-862, https://doi.org/10.2307/2527341 Go to original source...
  20. Christoffersen, P. F., Pelletier, D. (2004). Backtesting Value-at-risk: A Duration-based Approach. Journal of Financial Econometrics, 2(1), 84-108, https://doi.org/10.1093/jjfinec/nbh004 Go to original source...
  21. Kinateder, H. (2016). Basel II versus III - A Comparative Assessment of Minimum Capital Requirements for Internal Model Approaches. Journal of Risk, 18(3), 25-45, https://doi.org/10.21314/j0r.2016.325 Go to original source...
  22. Kresta, A., Tichý, T. (2012). International equity portfolio risk modeling: The case of NIG model and ordinary copula functions. Finance a úvěr - Czech Journal of Economics and Finance, 61(2), 141-151.
  23. Kresta, A., Tichý, T. (2016). Selection of Efficient Market Risk Models: Backtesting Results Evaluation with DEA Approach. Computers & Industrial Engineering, 102, 331-339, https://doi.org/10.1016/j.cie.2016.07.017 Go to original source...
  24. Kupiec, P. (1995). Techniques for Verifying the Accuracy of Risk Management Models. Journal of Derivatives, 3(2), 73-84, https://doi.org/10.3905/jod.1995.407942 Go to original source...
  25. Leccadito, A., Boffelli, S., Urga, G. (2014). Evaluating the Accuracy of Value-at-risk Forecasts: New Multilevel Tests. International Journal of Forecasting, 30(2), 206-216, https://doi.org/10.1016/j.ijforecast.2013.07.014 Go to original source...
  26. Mandelbrot, B. (1963). The Variation of Certain Speculative Prices. Journal of Business, 36(4), 394-419, https://doi.org/10.1086/294632 Go to original source...
  27. Mandelbrot, B. (1967). The Variation of Some Other Speculative Prices. Journal of Business, 40(4), 393-413, https://doi.org/10.1086/295006 Go to original source...
  28. Mandelbrot, B., Taylor, M. (1967). On the Distribution of Stock Price Differences. Operations Research, 15(6), 1057-1062, https://doi.org/10.1287/opre.15.6.1057 Go to original source...
  29. Pérignon D., Smith, R. (2010). The Level and Quality of Value-at-Risk Disclosure by Commercial Banks. Journal of Banking & Finance, 34(2), 362-377, https://doi.org/10.1016/j.jbankfin.2009.08.009 Go to original source...
  30. Rank, J. (2007). Copulas. From Theory to Application in Finance. London: Risk books. ISBN 978-1904339458.
  31. Resti, A., Sironi, A. (2007). Risk Management and Shareholders' Value in Banking: From Risk Measurement Models to Capital Allocation Policies. Chichester: Wiley. ISBN 978-0470029787.
  32. Rockafellar, R. T., Uryasev, S. (2002). Conditional Value-at-Risk for General Loss Distributions. Journal of Banking and Finance, 26(7), 1443-1471, https://doi.org/10.1016/s0378-4266(02)00271-6 Go to original source...
  33. Tichý, T. (2010). Posouzení odhadu měnového rizika portfolia pomocí Lévyho modelů. Politická ekonomie, 58 (4), 504-521, https://doi.org/10.18267/j.polek.744 Go to original source...
  34. Wong, W. K. (2010). Backtesting Value-at-risk Based on Tail Losses. Journal of Empirical Finance, 17(3), 526-538, https://doi.org/10.1016/j.jempfin.2009.11.004 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.