Politická ekonomie 2008, 56(6):772-794 | DOI: 10.18267/j.polek.663

Posouzení vybraných možností zefektivnění simulace Monte Carlo při opčním oceňování

Tomáš Tichý
Vysoká škola báňská - Technická univerzita Ostrava.

Examination of selected improvement approaches to Monte Carlo simulation in option pricing

In general, there exist many ways to detect the fair value of financial derivatives. However, each of them is suitable for different purposes. For example, when the payoff function is not very simple or the underlying process is too complex, the approach of Monte Carlo simulation can be useful. Unfortunately, the plain Monte Carlo simulation needs a very high number of independent paths to get reliable results. It is the reason why an improvement of the plain approach should be applied to decrease the number of paths required in order to get reliable results. In this paper we study more closely several such approaches and examine their potential of increasing the efficiency. To be more exact, we apply the antithetic variates method and stratified sampling approaches, including their combinations in order to get the fair price of a plain vanilla call. We consider three distinct underlying processes: geometric Brownian motion, variance gamma model and normal inverse Gaussian model. We also verify the confidence interval for the option price. We did not find any improvements of examined methods for complex processes considering the definition via two or more independent random numbers. However, if the required accuracy is very high, it might be useful to apply the stratification to the distribution function of the complex process.

Keywords: options, Simulation Monte Carlo, variance reduction methods, option pricing, Black and Scholes model, Lévy process, variance gamma model, normal inverse Gaussian model, confidence interval
JEL classification: C1, G13, G2

Zveřejněno: 1. prosinec 2008  Zobrazit citaci

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Tichý, T. (2008). Posouzení vybraných možností zefektivnění simulace Monte Carlo při opčním oceňování. Politická ekonomie56(6), 772-794. doi: 10.18267/j.polek.663
Stáhnout citaci

Reference

  1. BARNDORFF-NIELSEN, O. E. 1995. Normal inverse Gaussian distributions and the modeling of stock returns [Research report No. 300]. Aarhus University, Department of Theoretical Statistics, 1995.
  2. BARNDORFF-NIELSEN, O. 1998. E. Processes of Normal Inverse Gaussian type. Finance and Stochastics. 1998, vol. 2, no. 1, s. 41-68. ISSN 0949-2984. Přejít k původnímu zdroji...
  3. BARRAQUAND, J. 1995. Numerical valuation of high dimensional multivariate European securities. Management Science. 1995, vol. 41, no. 12, s. 1882-1891. ISSN 0025-1909. Přejít k původnímu zdroji...
  4. BLACK, F.; SCHOLES, M. 1973. The Pricing of Options and Corporate Liabilities. Journal of Political Economy. 1973, vol. 81, no. 3, s. 637-654. ISSN 0022-3808. Přejít k původnímu zdroji...
  5. BOYLE, P. 1977. Options: a Monte Carlo approach. Journal of Financial Economics. 1977, vol. 4, no. 4, s. 323-338, 1977. ISSN 0304-405X. Přejít k původnímu zdroji...
  6. BOYLE, P., BROADIE, M., GLASSERMAN, P. 1997. Monte Carlo methods for security pricing. Journal of Economic Dynamics and Control. 1997, vol. 21, no. 8/9, s. 1267-1321. ISSN 0165-1889. Přejít k původnímu zdroji...
  7. BROADIE, M.; DETEMPLE J. B. 2004. Option Pricing: Valuation Models and Applications. Managament Science. 2004, vol. 50, no. 9, s. 1145-1177. ISSN 0025-1909. Přejít k původnímu zdroji...
  8. CARR, P.; GEMAN, H.; MADAN, D. B.; YOR, M. 2003. Stochastic Volatility for Lévy Processes. Mathematical Finance. 2003, vol. 13, no. 3, s. 345-382. ISSN 0960-1627. Přejít k původnímu zdroji...
  9. CONT, R.; TANKOV, P. 2004. Financial Modelling with Jump Processes. London : Chapman & Hall/CRC, 2004. ISBN 15-848-84134.
  10. DUAN, J. C.; SIMONATO, J. G. 1998. Empirical martingale simulation for asset prices. Managament Science. 1998, vol. 44, no. 9, 1218-1233, 1998. ISSN 0025-1909. Přejít k původnímu zdroji...
  11. EBERLEIN, E.; KELLER, U. 1995. Hyperbolic Distributions in Finance. Bernoulli. 1995, vol. 1, no. 3, s. 281-299. ISSN 1350-7265. Přejít k původnímu zdroji...
  12. FAMA, E. F. 1965. The Behaviour of Stock Market Prices. Journal of Business. 1965, vol. 38, no. 1, s. 34-105. ISSN 0021-9398. Přejít k původnímu zdroji...
  13. GEMAN, H.; MADAN, D. B.; YOR, M. 2001. Time changes for Lévy processes. Mathematical Finance. 2001, vol. 11, no. 1, s. 79-96. ISSN 0960-1627. Přejít k původnímu zdroji...
  14. GLASSERMAN, P. 2004. Monte Carlo Methods in Financial Engineering, New York : Springer-Verlag, 2004. ISBN 0-387-00451-8.
  15. HULL, J. C. 2005. Options, Futures, & other Derivatives. 6th ed. Upper Saddle river : Prentice Hall. 2005. ISBN 0-13-149908-4.
  16. KEMNA, A. G. Z.; VORST, A. C. F. 1990. A pricing method for options based on average asset values. Journal of Banking and Finance. 1990, vol. 14, no. 1, s. 113-129. ISSN 0378-4266. Přejít k původnímu zdroji...
  17. MACBETH, J. D.; MERVILLE, L. J. 1979. An Empirical Examination of the Black-Scholes Call Option Pricing Model. The Journal of Finance. 1979, vol. 34, no. 5, s. 1173-1186. ISSN 0022-1082. Přejít k původnímu zdroji...
  18. MADAN, D. B.; MILNE, F. 1991. Option pricing with VG martingale components. Mathematical Finance. 1991, vol. 1, no. 4, s. 39-56. ISSN 0960-1627. Přejít k původnímu zdroji...
  19. MADAN, D. B.; SENETA, E. 1990. The VG model for Share Market Returns. Journal of Business. 1990, vol. 63, no. 4, s. 511-524. ISSN 0021-9398. Přejít k původnímu zdroji...
  20. MADAN, D. B.; CARR, P.; CHANG, E. C. 1998. The variance gamma process and option pricing, European Finance Review. 1998, vol. 2, no. 1, s. 79-105. ISSN 1382-6662. Přejít k původnímu zdroji...
  21. MCKAY, M. D.; CONOVER, W. J.; BECKMAN, R. J. 1979. A comparison of three methods for selecting input variables in the analysis of output from a computer code. Technometrics. 1979, vol. 21, no. 2, s. 239-245. ISSN 0040-1706. Přejít k původnímu zdroji...
  22. MCLEISH, D. L. 2005. Monte Carlo Simulation and Finance. Hoboken : Wiley, 2005. ISBN 0-47-167778-7
  23. RUBINSTEIN, M. 1985. Non-parametric tests of alternative option pricing models using all reported trades and quotes on the 30 most active CBOE option classes from August 23, 1976 through August 31, 1978. Journal of Finance. 1985, vol. 40, no. 2, s. 455-480, 1985. ISSN 0022-1082. Přejít k původnímu zdroji...
  24. RUBINSTEIN, M. 1994. Implied binomial trees. Journal of Finance. 1994, vol. 49, no. 3, s. 771-818. ISSN 0022-1082. Přejít k původnímu zdroji...
  25. SCHOUTENS, W. 2003. Lévy processes in Finance: Pricing Financial Derivatives. Chichester : Wiley, 2003. ISBN 978-0-470-85156-2. Přejít k původnímu zdroji...
  26. STEIN, M. 1987. Large sample properties of simulations using Latin hypercube sampling. Technometrics. 1987, vol 29, no. 2, s. 143-151, 1987. ISSN 0040-1706. Přejít k původnímu zdroji...
  27. TICHÝ, T. 2006. Model Dependency of the Digital Option Replication: Replication under Incomplete Model. Finance a úvěr - Czech Journal of Economics and Finance. 2006, vol. 56, no. 7-8, s. 361-379. ISSN 0015-1920.
  28. TICHÝ, T. 2006. Finanční deriváty - typologie finančních derivátů, podkladové procesy, oceňovací modely. Ostrava : VŠB-TU Ostrava, 2006. ISBN 80-248-1180-4.

Tento článek je publikován v režimu tzv. otevřeného přístupu k vědeckým informacím (Open Access), který je distribuován pod licencí Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), která umožňuje nekomerční distribuci, reprodukci a změny, pokud je původní dílo řádně ocitováno. Není povolena distribuce, reprodukce nebo změna, která není v souladu s podmínkami této licence.