Politická ekonomie X:X | DOI: 10.18267/j.polek.1531

Labor in the Age of AI: Productivity Trends Across the EU

Jordan Kjosevski ORCID..., Mihail Petkovski ORCID..., Aleksandar Stojkov ORCID...
Jordan Kjosevski (corresponding author) University St. Kliment Ohridski - Bitola, North Macedonia
Mihail Petkovski, University Ss. Cyril and Methodius in Skopje, North Macedonia
Aleksandar Stojkov, Iustinianus Primus Law Faculty, Ss. Cyril and Methodius in Skopje, North Macedonia

This study investigates the impact of Artificial Intelligence (AI) readiness on labour productivity across 27 European Union (EU) countries between 2019 and 2024. Using a dynamic panel approach, we apply Pooled OLS, Fixed Effects, Difference GMM, and System GMM estimators to account for endogeneity and persistence in productivity. The System GMM model is preferred for its robustness and reliability. Results show that AI readiness positively influences labour productivity, though the effect remains modest, reflecting disparities in adoption across regions. Other significant drivers include foreign direct investment and R&D expenditure, while government consumption and labour costs have a negative impact. Unexpectedly, trade openness shows a negative association, likely due to structural differences in value chain integration. Education and institutional quality were statistically insignificant in the short term. The findings suggest that EU policymakers should prioritize AI implementation, digital infrastructure, skill development, and innovation to close regional gaps and promote inclusive productivity growth.

Keywords: Artificial Intelligence, labor productivity, EU, System GMM, digital transformation

Received: June 4, 2025; Revised: August 11, 2025; Accepted: September 1, 2025; Prepublished online: September 8, 2025 

Download citation

References

  1. Acemoglu, D., Autor, D., Hazell, J., & Restrepo, P. (2022). Artificial intelligence and jobs: Evidence from online vacancies. Journal of Labor Economics, 40(S1), S293-S340. https://doi.org/10.1086/718327 Go to original source...
  2. Acemoglu, D., & Autor, D. H. (2018). What does human capital do? A review of the literature and new directions. Journal of Economic Literature, 56(2), 312-369. https://doi.org/10.1257/jel.201613 Go to original source...
  3. Acemoglu, D., Johnson, S., & Robinson, J. A. (2005). Institutions as a fundamental cause of long-run growth. In Handbook of economic growth (Vol. 1, pp. 385-472). Elsevier. Go to original source...
  4. Acemoglu, D., & Restrepo, P. (2018a). Artificial intelligence, automation, and work. Journal of Economic Perspectives, 33(2), 193-210. https://doi.org/10.1257/jep.33.2.193 Go to original source...
  5. Acemoglu, D., & Restrepo, P. (2018b). The race between man and machine: Implications of technology for growth, factor shares, and employment. American Economic Review, 108(6), 1488-1542. Go to original source...
  6. Afonso, A., & Jalles, J. T. (2016). Economic performance and government size. Journal of Macroeconomics, 47, 28-41.
  7. Aghion, P., & Howitt, P. (1992). A model of growth through creative destruction. Econometrica, 60(2), 323-351. https://doi.org/10.2307/2951599 Go to original source...
  8. Aghion, P., & Howitt, P. (2006). Appropriate growth policy: A unifying framework. Journal of the European Economic Association, 4(2-3), 269-314. https://doi.org/10.1162/jeea.2006.4.2-3.269 Go to original source...
  9. Aghion, P., Jones, B. F., & Jones, C. I. (2019). Artificial Intelligence and Economic Growth. In A. Agrawal, J. Gans, & A. Goldfarb (Eds.), The Economics of Artificial Intelligence: An Agenda (pp. 237-282). University of Chicago Press.
  10. Ahamed, F. (2021). Impact of public and private investments on economic growth of developing countries. https://arxiv.org/abs/2105.14199
  11. Akerlof, G. A., & Yellen, J. L. (1986). Efficiency wages and the labor market. Cambridge University Press. Go to original source...
  12. Aldieri, L., & Vinci, C. P. (2018). Innovation, ICT, and productivity: A sectoral analysis for European countries. Journal of Economics and Business, 95, 1-14. https://doi.org/10.1016/j.jeconbus.2017.12.001 Go to original source...
  13. Aldieri, L., Vinci, C. P., & Zoboli, R. (2020). The impact of artificial intelligence on firm performance: Evidence from Italy. Technological Forecasting and Social Change, 161, 120314. https://doi.org/10.1016/j.techfore.2020.120314 Go to original source...
  14. Alexopoulos, M., & Cohen, W. M. (2016). Patent citations and the geography of knowledge spillovers: Evidence from U.S. manufacturing. Journal of Regional Science, 56(3), 420-441. https://doi.org/10.1111/jors.12239 Go to original source...
  15. Alfaro, L., Chanda, A., Kalemli-Ozcan, S., & Sayek, S. (2004). FDI and economic growth: The role of local financial markets. Journal of International Economics, 64(1), 89-112. Go to original source...
  16. Agrawal, A., Gans, J., & Goldfarb, A. (2018). Prediction Machines: The Simple Economics of Artificial Intelligence. Harvard Business Review Press.
  17. Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The Review of Economic Studies, 58(2), 277-297. https://doi.org/10.2307/2297968 Go to original source...
  18. Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of error-components models. Journal of Econometrics, 68(1), 29-51. https://doi.org/10.1016/0304-4076(94)01642-D Go to original source...
  19. Autor, D. H. (2015). Why are there still so many jobs? The history and future of workplace automation. Journal of Economic Perspectives, 29(3), 3-30. https://doi.org/10.1257/jep.29.3.3 Go to original source...
  20. Autor, D. H., Levy, F., & Murnane, R. J. (2003). The skill content of recent technological change: An empirical exploration. Quarterly Journal of Economics, 118(4), 1279-1333. https://doi.org/10.1162/003355303322552801 Go to original source...
  21. Autor, D. H., & Salomons, A. (2017). Does productivity growth threaten employment? A long-run perspective. International Labour Review, 156(1), 97-116. https://doi.org/10.1111/ilr.12109 Go to original source...
  22. Baily, M., Brynjolfsson, E., & Korinek, A. (2023). Machines of mind: The case for an AI-powered economy.
  23. Baker, D. (2017). The link between low wages and low productivity growth: High wages make low productivity jobs disappear. Center for Economic and Policy Research (CEPR). https://cepr.net/publications/link-between-low-wages-and-low-productivity-growth-high-wages-make-low-productivity-jobs-disappear/
  24. Baek, J. (2016). Panel data estimation methods for heterogeneous dynamic panels. Journal of Economic Surveys, 30(3), 564-585. https://doi.org/10.1111/joes.12108 Go to original source...
  25. Baum, C. F. (2006). An introduction to modern econometrics using Stata. Stata Press.
  26. Barbieri, T., Piva, M., & Vivarelli, M. (2020). R&D, embodied technological change, and employment: Evidence from matched employer-employee data. Industrial and Corporate Change, 29(4), 989-1004. https://doi.org/10.1093/icc/dtaa006 Go to original source...
  27. Barro, R. J., & Lee, J. W. (1994). Sources of economic growth. Carnegie-Rochester Conference Series on Public Policy, 40, 1-46. Go to original source...
  28. Bergeaud, A., González-Torres Fernández, G., Labhard, V., & Sellner, R. (2025). AI can boost productivity - if firms use it. ECB Blog. https://www.ecb.europa.eu/press/blog/date/2025/html/ecb.blog20250328~60c0a587f7.en.html
  29. Berg, M. (1980). The machinery question and the making of political economy 1815-1848. Cambridge University Press. Go to original source...
  30. Bessen, J. E. (2017). AI and jobs: The role of demand. NBER Working Paper No. 24235. https://doi.org/10.3386/w24235 Go to original source...
  31. Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1), 115-143. Go to original source...
  32. Blundell, R., & Bond, S. (2000). GMM estimation with persistent panel data: An application to production functions. Econometrics Reviews, 19, 321-340. Go to original source...
  33. Blundell, R., & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1), 115-143. https://doi.org/10.1016/S0304-4076(98)00009-8 Go to original source...
  34. Bond, S. (2002). Dynamic panel data models: A guide to micro data methods and practice. Portuguese Economic Journal, 1(2), 141-162. https://doi.org/10.1007/s10258-002-0029-9 Go to original source...
  35. Bond, S., Hoeffler, A., & Temple, J. (2001). GMM estimation of empirical growth models. CEPR Discussion Papers, No. 3048. https://doi.org/10.2139/ssrn.286956 Go to original source...
  36. Bond, S. (2002). Dynamic panel data models: A guide to micro data methods and practice. Portuguese Economic Journal, 1(2), 141-162. Go to original source...
  37. Bond, S., Hoeffler, A., & Temple, J. (2001). GMM estimation of empirical growth models (Economics Working Paper No. 2001-W21). University of Oxford, Department of Economics. https://doi.org/10.2139/ssrn.290522 Go to original source...
  38. Borensztein, E., De Gregorio, J., & Lee, J.-W. (1998). How does foreign direct investment affect economic growth? Journal of International Economics, 45(1), 115-135. Go to original source...
  39. Bosworth, B., & Collins, S. M. (2003). The empirics of growth: An update. Brookings Papers on Economic Activity, 2003(2), 113-206. Go to original source...
  40. Bouis, R., Duval, R., & Eugster, J. (2012). How quickly does structural reform pay off? An empirical analysis of the short-term effects of unemployment benefit reform. OECD Economics Department Working Papers No. 875. Go to original source...
  41. Brandes, P., & Wattenhofer, R. (2016). Opening the Frey/Osborne black box: Which tasks of a job are susceptible to computerization? arXiv preprint arXiv:1604.08823. https://arxiv.org/abs/1604.08823
  42. Bresnahan, T. F., & Trajtenberg, M. (1995). General purpose technologies 'Engines of growth'? Journal of Econometrics, 65(1), 83-108. https://doi.org/10.1016/0304-4076(94)01598-T Go to original source...
  43. Brzeski, C., & Burk, M. (2015). The impact of automation on jobs in Germany. Deutsche Bank Research. https://www.dbresearch.com/PROD/RPS_EN-PROD/PROD0000000000444422/The_impact_of_automation_on_jobs_in_Germany.pdf
  44. Brynjolfsson, E., & McAfee, A. (2014). The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. W.W. Norton and Company.
  45. Brynjolfsson, E., & McAfee, A. (2017). Machine, platform, crowd: Harnessing our digital future. W. W. Norton & Company.
  46. Brynjolfsson, E., Rock, D., & Syverson, C. (2019). Artificial intelligence and the modern productivity paradox. In A. Agrawal, J. Gans, & A. Goldfarb (Eds.), The Economics of Artificial Intelligence: An Agenda (pp. 23-45). University of Chicago Press. Go to original source...
  47. Brynjolfsson, E., Rock, D., & Syverson, C. (2021). The Productivity J-Curve: How Intangibles Complement General Purpose Technologies. American Economic Journal: Macroeconomics, 13(1), 333-372. Go to original source...
  48. Calvino, F., & Fontanelli, L. (2023). Firms' use of artificial intelligence - Cross-country evidence on business characteristics, asset complementarities, and productivity. VoxEU / CEPR. https://cepr.org/voxeu/columns/firms-use-artificial-intelligence-cross-country-evidence-business-characteristics
  49. Card, D., & Krueger, A. B. (1995). Time-series minimum-wage studies: A meta-analysis. American Economic Review, 85(2), 238-243.
  50. Carkovic, M., & Levine, R. (2005). Does foreign direct investment accelerate economic growth? In T. H. Moran, E. M. Graham, & M. Blomström (Eds.), Does Foreign Direct Investment Promote Development? (pp. 195-220). Institute for International Economics.
  51. Cockburn, I. M., Henderson, R., & Stern, S. (2018). The impact of artificial intelligence on innovation. In A. Agrawal, J. Gans, & A. Goldfarb (Eds.), The Economics of Artificial Intelligence: An Agenda (pp. 115-146). University of Chicago Press. Go to original source...
  52. Cohen, W. M., & Levinthal, D. A. (1989). Innovation and learning: The two faces of R&D. The Economic Journal, 99(397), 569-596. Go to original source...
  53. Constantinescu, C., Mattoo, A., & Ruta, M. (2015). The global trade slowdown: Cyclical or structural? IMF Working Paper No. 15/6. Go to original source...
  54. Crafts, N. (2004). Steam as a general purpose technology: A growth accounting perspective. Economic Journal, 114(495), 338-351. https://doi.org/10.1111/j.1468-0297.2004.00225.x Go to original source...
  55. Culey, S. (2018). Transition point: From steam to the singularity. Matador.
  56. Dauth, W., Findeisen, S., & Südekum, J. (2017). The adjustment of labor markets to robots. IZA Discussion Paper No. 10800. https://doi.org/10.2139/ssrn.3032227 Go to original source...
  57. De Prato, G., Nepelski, D., & Balland, P. A. (2018). The geography of AI research in Europe. European Commission Joint Research Centre. https://doi.org/10.2760/204162 Go to original source...
  58. Dorfman, R. (1973). Wassily Leontief and input-output analysis. Scientific American, 229(3), 90-99. https://doi.org/10.1038/scientificamerican0973-90 Go to original source...
  59. Dosi, G., Llerena, P., & Labini, M. S. (2021). Innovation, employment, and productivity: A micro-level analysis. Industrial and Corporate Change, 30(3), 589-612. https://doi.org/10.1093/icc/dtaa040 Go to original source...
  60. Dosi, G., & Monhen, F. (2019). Innovation and employment: A sectoral analysis. Research Policy, 48(4), 1037-1051. https://doi.org/10.1016/j.respol.2018.12.003 Go to original source...
  61. Duflo, E. (2001). Schooling and labor market consequences of school construction in Indonesia: Evidence from an unusual policy experiment. American Economic Review, 91(4), 795-813. https://doi.org/10.1257/aer.91.4.795 Go to original source...
  62. Economist. (2014, October 4). Technology and jobs: Coming to an office near you. The Economist. https://www.economist.com/special-report/2014/01/18/coming-to-an-office-near-you
  63. European Commission. (2020). AI Watch: National strategies on Artificial Intelligence - A European perspective. Publications Office of the European Union.
  64. European Commission. (2021a). The EU's Digital Decade: Digital Transformation Strategy for 2030. European Commission.
  65. European Commission. (2021b). Artificial intelligence in Europe: Challenges and opportunities. European Commission.
  66. European Commission. (2023). Digital economy and society index (DESI) 2023. Publications Office of the European Union. https://digital-strategy.ec.europa.eu/en/library/digital-economy-and-society-index-desi-2023
  67. Falk, M., & Hagsten, E. (2018). ICT and productivity growth: A sectoral analysis. Journal of Economics and Business, 95, 15-28. https://doi.org/10.1016/j.jeconbus.2017.12.002 Go to original source...
  68. Fedderke, J. W., & Mariotti, M. (2002). Changing labor market conditions in South Africa: A sectoral analysis of the period 1970-1997. South African Journal of Economics, 70(5), 830-864. https://doi.org/10.1111/j.1813-6982.2002.tb01107.x Go to original source...
  69. Feinstein, C. H. (1998). Pessimism perpetuated: Real wages and the standard of living in Britain during and after the Industrial Revolution. Journal of Economic History, 58(3), 625-658. https://doi.org/10.1017/S0022050700021100 Go to original source...
  70. Fernandez de Arroyabe, I., Arranz, C. F. A., & Arroyabe, M. F. (2024). Analyzing AI adoption in European SMEs: A study of digital capabilities, innovation, and external environment. Technological Societies, 79, 102733. https://doi.org/10.1016/j.techsoc.2024.102733 Go to original source...
  71. Filippini, M., & Hunt, L. C. (2011). Energy demand and energy efficiency in the OECD countries: a stochastic demand frontier approach. Energy Journal, 32(2), 59-80. Go to original source...
  72. Frankel, J. A., & Romer, D. (1999). Does trade cause growth? American Economic Review, 89(3), 379-399. Go to original source...
  73. Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerization? Technological Forecasting and Social Change, 114, 254-280. https://doi.org/10.1016/j.techfore.2016.08.019 Go to original source...
  74. Fujii, H., & Managi, S. (2018). Patent applications and technological change: Evidence from Japan. Technological Forecasting and Social Change, 134, 1-10. https://doi.org/10.1016/j.techfore.2017.11.021 Go to original source...
  75. Galor, O., & Weil, D. N. (2000). Population, technology, and growth: From Malthusian stagnation to the demographic transition and beyond. American Economic Review, 90(4), 806-828. https://doi.org/10.1257/aer.90.4.806 Go to original source...
  76. Greene, W. H. (2008). Econometric analysis (6th ed.). Pearson Education.
  77. Goos, M., & Manning, A. (2007). Lousy and lovely jobs: The rising polarization of work in Britain. The Review of Economics and Statistics, 89(1), 118-133. https://doi.org/10.1162/rest.89.1.118 Go to original source...
  78. Government of Vietnam. (2024, January 16). Viet Nam ranks 5th in Southeast Asia in Government AI Readiness Index. https://en.baochinhphu.vn/viet-nam-ranks-5-in-southeast-asia-in-government-ai-readiness-index-11124011621452292.htm
  79. Graetz, G., & Michaels, G. (2018). Robots at work. Review of Economics and Statistics, 100(5), 753-768. Go to original source...
  80. Griffith, R., Redding, S., & Van Reenen, J. (2004). Mapping the two faces of R&D: Productivity growth in a panel of OECD industries. Review of Economics and Statistics, 86(4), 883-895. https://doi.org/10.1162/0034653043125194 Go to original source...
  81. Guarascio, D., & Reljic, J. (2025). AI and employment in Europe. Economics Letters, 247, 112183. https://doi.org/10.1016/j.econlet.2025.112183 Go to original source...
  82. Gujarati, D. N., & Porter, D. C. (2009). Basic econometrics (5th ed.). McGraw-Hill Irwin
  83. Hall, B. H., Mairesse, J., & Mohnen, P. (2010). Measuring the returns to R&D. In B. H. Hall & N. Rosenberg (Eds.), Handbook of the Economics of Innovation (Vol. 2, pp. 1033-1082). North-Holland. Go to original source...
  84. Hall, R. E., & Jones, C. I. (1999). Why do some countries produce so much more output per worker than others? Quarterly Journal of Economics, 114(1), 83-116. https://doi.org/10.1162/003355399555954 Go to original source...
  85. Hall, B. H., Lotti, F., & Mairesse, J. (2010). Evidence on the impact of R&D and ICT investments on innovation and productivity in Italian firms. Economics of Innovation and New Technology, 19(8), 763-784. https://doi.org/10.1080/10438590903521549 Go to original source...
  86. Hanushek, E. A., & Woessmann, L. (2007). The role of cognitive skills in economic development. Journal of Economic Literature, 46(3), 607-668. https://doi.org/10.1257/jel.46.3.607 Go to original source...
  87. IDRC. (2023). Government AI Readiness Index: Equal implementation needed to reduce global inequalities. https://idrc-crdi.ca/en/perspectives/government-ai-readiness-index-equal-implementation-needed-reduce-global-inequalities
  88. Inklaar, R., & Timmer, M. P. (2013). Using industry-level data to measure productivity growth across countries. Review of Income and Wealth, 59(4), 682-708.
  89. Jorgenson, D. W., & Fraumeni, B. M. (1981). Investment in education and U.S. economic growth. American Economic Review, 71(1), 50-64.
  90. Kassa, B. Y., & Worku, E. K. (2025). The impact of artificial intelligence on organizational performance: The mediating role of employee productivity. Journal of Open Innovation: Technology, Market, and Complexity, 11(1), 100474. https://doi.org/10.1016/j.joitmc.2025.100474 Go to original source...
  91. Kaufmann, D., & Kraay, A. (2002). Growth without governance. World Bank Policy Research Working Paper No. 2928. Go to original source...
  92. Kaufmann, D., Kraay, A., & Mastruzzi, M. (2005). Governance matters IV: Governance indicators for 1996-2004 (World Bank Policy Research Working Paper No. 3630). World Bank. https://doi.org/10.1596/1813-9450-3630 Go to original source...
  93. Klette, T. J. (1996). R&D, scope economies, and plant performance. RAND Journal of Economics, 27(3), 502-522. https://doi.org/10.2307/2555940 Go to original source...
  94. Licht, T., & Wohlrabe, K. (2024). AI adoption among German firms. CESifo Working Paper No. 11459. CESifo / ifo Business Survey. https://www.cesifo.org/en/publications/2024/working-paper/ai-adoption-among-german-firms Go to original source...
  95. Lokshin, B., Belderbos, R., & Carree, M. (2008). The productivity effects of internal and external R&D: Evidence from a dynamic panel data model. Oxford Bulletin of Economics and Statistics, 70(3), 399-413. Go to original source...
  96. Mairesse, J., & Mohnen, P. (2010). Using innovation surveys for econometric analysis. In B. H. Hall & N. Rosenberg (Eds.), Handbook of the Economics of Innovation (Vol. 2, pp. 1129-1155). North-Holland. Go to original source...
  97. Marioni, L. da S., Rincon-Aznar, A., & Venturini, F. (2024). Productivity performance, distance to frontier and AI innovation: Firm-level evidence from Europe. Journal of Economic Behavior & Organization. https://doi.org/10.1016/j.jebo.2024.106762 Go to original source...
  98. Mill, J. S. (1929). Principles of political economy (W. J. Ashley, Ed.). Longmans, Green and Co. (Original work published 1848)
  99. Mokyr, J. (2004). Accounting for the Industrial Revolution. In R. Floud & P. Johnson (Eds.), The Cambridge Economic History of Modern Britain (Vol. 1, pp. 1-27). Cambridge University Press. Go to original source...
  100. Mulder, M., & de Groot, H. L. F. (2007). Energy productivity developments in manufacturing sectors: A cross-country comparison. Energy Economics, 29(3), 545-562. https://doi.org/10.1016/j.eneco.2006.05.009 Go to original source...
  101. Myant, M., Theodoropoulou, S., & Piasna, A. (2016). What drives wage gaps in Europe? European Trade Union Institute (ETUI) Working Paper 2016.06.
  102. Myrdal, G. (1957). Economic Theory and Under-Developed Regions. Duckworth.
  103. Navaretti, G. B., & Venables, A. J. (2004). Multinational firms in the world economy. Princeton University Press. Go to original source...
  104. North, D. (1990). Institutions, Institutional Change, and Economic Performance. Cambridge University Press. Go to original source...
  105. OECD. (2016). Links between weak investment and the slowdown in productivity and potential output growth across the OECD. https://doi.org/10.1787/5jlwvz0smq45-en Go to original source...
  106. OECD. (2024). AI and productivity, distribution and growth. OECD Publishing. https://doi.org/10.1787/ai-prod-growth-2024-en Go to original source...
  107. Oxford Insights. (2019). Government AI Readiness Index 2019. https://www.oxfordinsights.com/government-ai-readiness-index-2019
  108. Petkovski, M., Kjosevski, J., Stojkov, A., Katerina, B.P. (2023). Bank Profitability and Economic Growth: Evidence from Central and Eastern Europe Finance a úvěr-Czech Journal of Economics and Finance, 73, no. 3 https://doi.org/10.32065/CJEF.2023.03.04 IF.1 Go to original source...
  109. Ricardo, D. (1971). On the principles of political economy and taxation. Penguin Books. (Original work published 1821)
  110. Romer, P. M. (1990). Endogenous technological change. Journal of Political Economy, 98(5, Part 2), S71-S102. https://doi.org/10.1086/261725 Go to original source...
  111. Roodman, D. (2009). How to do xtabond2: An introduction to difference and system GMM in Stata. Stata Journal, 9(1), 86-136. Go to original source...
  112. Saam, M. (2024). The impact of artificial intelligence on productivity and employment - How can we assess it and what can we observe? Intereconomics: Review of European Economic Policy, 59(1), 22-27. https://doi.org/10.2478/ie-2024-0006 Go to original source...
  113. Schumpeter, J. A. (1942). Capitalism, Socialism, and Democracy. Harper & Brothers.
  114. Singh, A. (2023). Economic growth and labor investment efficiency. International Review of Finance, 23(4), 886-902. https://doi.org/10.1111/irfi.12415 Go to original source...
  115. Solow, R. M. (1956). A contribution to the theory of economic growth. Quarterly Journal of Economics, 70(1), 65-94. https://doi.org/10.2307/1884513 Go to original source...
  116. Solow, R. M. (1957). Technical change and the aggregate production function. Review of Economics and Statistics, 39(3), 312-320. https://doi.org/10.2307/1926047 Go to original source...
  117. Taglioni, D., & Winkler, D. (2016). Making global value chains work for development. The World Bank. Go to original source...
  118. The Australian. (2024, February 29). Anthony Albanese at odds with RBA on productivity, wages. The Australian. https://www.theaustralian.com.au/nation/politics/anthony-albanese-at-odds-with-rba-on-productivity-wages/news-story/f2a0e3cb1d048bf32b47ead8b71812da
  119. Teixeira, A. A. C., & Queirós, A. M. (2016). Using system-GMM in applied microeconomics: An empirical illustration. Empirical Economics, 51(3), 935-954. https://doi.org/10.1007/s00181-015-0994-3 Go to original source...
  120. Trenovski, B., Velkovska, I., & Velichkovski, I. (2021). The minimum wage impact on labour productivity: The case of selected SEE countries. Economic Development/Ekonomiski Razvoj, 23(1-2), 15-30. Retrieved from https://www.researchgate.net/publication/354380105
  121. Vandenbussche, J., Aghion, P., & Meghir, C. (2006). Growth, distance to frontier and composition of human capital. Journal of Economic Growth, 11(2), 97-127. Go to original source...
  122. Van Roy, V., Vértesy, D., & Vivarelli, M. (2022). Technology adoption, innovation and productivity in the EU: A firm-level analysis. Research Policy, 51(7), 104550. https://doi.org/10.1016/j.respol.2022.104550 Go to original source...
  123. Vivarelli, M. (2013). Technology, employment and skills: An interpretative framework. Eurasian Business Review, 3(1), 66-89. https://doi.org/10.14208/BF03353824 Go to original source...
  124. Voth, H.-J. (2001). The longest years: New estimates of labor input in England, 1760-1830. Journal of Economic History, 61(4), 1065-1082. https://doi.org/10.1017/S0022050701001551 Go to original source...
  125. Windmeijer, F. (2005). A finite sample correction for the variance of linear efficient two-step GMM estimators. Journal of Econometrics, 126(1), 25-51. https://doi.org/10.1016/j.jeconom.2004.02.005 Go to original source...
  126. Wolff, E. N. (2001). The productivity effects of higher education human capital in selected countries of Sub-Saharan Africa. Zbornik radova Ekonomskog fakulteta u Rijeci: časopis za ekonomsku teoriju i praksu. Retrieved from https://doaj.org/article/5d0561da61c9480a9e040d02ace5a439
  127. World Bank. (2022). Regulatory quality index and economic growth in the EU. World Bank.
  128. World Justice Project. (2024a). How does the World Justice Project create its Rule of Law Index? https://worldjusticeproject.org/news/how-does-world-justice-project-create-its-rule-law-index
  129. World Justice Project. (2024b). WJP Rule of Law Index 2024: Global press release. https://worldjusticeproject.org/news/wjp-rule-law-index-2024-global-press-release
  130. Yerdelen Tatoglu, N. (2018). Dynamic panel data methods in economics: A review of recent advances. International Journal of Economics and Finance, 10(3), 129-138. https://doi.org/10.5539/ijef.v10n3p129 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.