Politická ekonomie 2025, 73(2) Special Issue I:243-274 | DOI: 10.18267/j.polek.1488

Inverted U-shape Impact of China's Manufacturing Digitization on Low-carbon Environmental Governance Performance

Xuegang Zhan ORCID...1, Rita Yi Man Li ORCID...2, Jing Xia ORCID...3
1 Chongqing Technology and Business University, School of Accounting, Chongqing, PR China
2 Hong Kong Shue Yan University, Sustainable Real Estate Research Centre/Department of Economics and Finance, Hong Kong, Hong Kong SAR, China
3 Chongqing Technology and Business University, School of Accounting, Chongqing, PR China

Too much of a good thing can ultimately become detrimental. Is this the case in the manufacturing industry's carbon governance under the guise of digitization? This study examines the non-linear effect of low-carbon environmental governance at the provincial level in China's manufacturing sector which is the first of its kind. Using the slacks-based measure data envelopment approach (SBM-DEA), this study assesses changes in environmental governance performance over time, accounting for desirable and undesirable outputs. The findings indicate an inverted U-shaped relationship between manufacturing digitization and low-carbon environmental governance performance in China. This suggests that digitization improves environmental outcomes initially, but excessive digitization causes adverse environmental impacts due to increased energy use, resource depletion and waste production. It offers insights into the complicated interplay of benefits and challenges in manufacturing digitization and its implications for achieving sustainable, low-carbon development in China. It highlights the importance of thoughtful digital transition to support low-carbon development goals.

Keywords: Manufacturing digitization, low-carbon environmental governance, U-shape, performance
JEL classification: L16, O14, O33

Received: January 25, 2024; Revised: December 4, 2024; Accepted: January 14, 2025; Prepublished online: February 27, 2025; Published: April 29, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Zhan, X., Yi Man Li, R., & Xia, J. (2025). Inverted U-shape Impact of China's Manufacturing Digitization on Low-carbon Environmental Governance Performance. Politická ekonomie73(Spec.issue I.), 243-274. doi: 10.18267/j.polek.1488
Download citation

References

  1. Avilés-Sacoto, S. V., Güemes-Castorena, D., Cook, W. D. (2016). Environmental performance evaluation: A state-level DEA analysis. Socio-Economic Planning Sciences, 78, 101082. Go to original source...
  2. Bai, C., Dallasega, P., Orzes, G., Sarkis, J. (2020). Industry 4.0 technologies assessment: a sustainability perspective. International Journal of Production Economics, 229, 107776. https://doi.org/10.1016/j.ijpe.2020.107776 Go to original source...
  3. Bai, C., Quayson, M., Sarkis, J. (2021). COVID-19 pandemic digitization lessons for sustainable development of micro-and small-enterprises. Sustainable Production and Consumption, 27, 1989-2001. https://doi.org/10.1016/j.spc.2021.04.035 Go to original source...
  4. Bélaïd, F., Youssef, A. B., Lazaric, N. (2020). Scrutinizing the direct rebound effect for French households using quantile regression and data from an original survey. Ecological Economics, 176, 106755. Avaiable at: 10.1016/j.ecolecon.2020.106755 Go to original source...
  5. Bennett, N. J., Satterfield, T. (2018) Environmental governance: A practical framework to guide design, evaluation, and analysis. Conservation Letters, 11(1), e12600. https://doi.org/10.1111/conl.12600 Go to original source...
  6. Benzidia, S., Makaoui, N., Bentahar, O. (2021). The impact of big data analytics and artificial intelligence on green supply chain process integration and hospital environmental performance. Technological Forecasting and Social Change, 165, 120557. https://doi.org/10.1016/j.techfore.2020.120557 Go to original source...
  7. Berrone, P., Fosfuri, A., Gelabert, L., and Gomez-Mejia, L. R. (2013). Necessity as the mother of "green" inventions: institutional pressures and environmental innovations. Strategic Management Journal, 34(8), 891-909. Avaiable et: http://www.jstor.org/stable/23471046 Go to original source...
  8. Blazek, M., Chong, H. M., Loh, W. S., Koomey, J. (2004). Data centers revisited: assessment of the energy impact of retrofits and technology trends in a high-density computing facility. Journal of Infrastructure Systems, 10(3), 98-104. https://doi.org/10.1061/(ASCE)1076-0342(2004)10:3(98) Go to original source...
  9. Boakye, D. J., Tingbani, I., Ahinful, G. S., & Nsor-Ambala, R. (2021). The relationship between environmental management performance and financial performance of firms listed in the Alternative Investment Market (AIM) in the UK. Journal of Cleaner Production, 278, 124034. https://doi.org/10.1016/j.jclepro.2020.124034 Go to original source...
  10. Chakraborty, S., Charanya, T., de Laubier, R. (2020). The evolving state of digital transformation. Boston Consulting Group [Retrieved 2021-03-11] Available at: https://www.bcg.com/publications/2020/the-evolving-state-of-digital-transformation
  11. Boussofiane, A., Dyson, R. G., and Thanassoulis, E. (1991). Applied Data Envelopment Analysis. European Journal of Operational Research, 52(1), 1-15. https://doi.org/10.1016/0377-2217(91)90331-o Go to original source...
  12. Casper, S., Whitley, R. (2004). Managing competences in entrepreneurial technology firms: a comparative institutional analysis of Germany, Sweden and the UK. Research Policy, 33(1), 89-106. https://doi.org/10.1016/S0048-7333(03)00100-8 Go to original source...
  13. Cook, W. D., Zhu, J. (2013). Data Envelopment Analysis: Balanced Benchmarking. Scotts Valley. CA: Create Space Independent Publishing Platform.
  14. Charnes, A., Cooper, W. W., Rhodes, E. (1978). Measuring the Efficiency of Decision Making Units. European Journal of Operational Research, 2(6), 429-444. https://doi.org/10.1016/0377-2217(78)90138-8 Go to original source...
  15. Chen, P. H., Ong, C. F., Hsu, S. C. (2016). Understanding the relationships between environmental management practices and financial performances of multinational construction firms. Journal of Cleaner Production, 139, 750-760. https://doi.org/10.1016/j.jclepro.2016.08.109 Go to original source...
  16. Chen, J., Gao, M., Ma, K., Song, M. (2020). Different effects of technological progress on China's carbon emissions based on sustainable development. Business Strategy and the Environment, 29(2), 481-492. https://doi.org/10.1002/bse.2381 Go to original source...
  17. Chen, X., Yang, X. (2021). Can the digital economy achieve the optimal strength of the industrial chain? Based on the China input-output surface plate data from 1987-2017. Nanjing Social Science, 2, 17-26.
  18. Cheng, H., Ren, C., You, S. (2023). Digital economy and carbon emissions from tourism industry: spatial pattern and spillover effects. Central South University of Forestry and Technology Journal (Social Science Edition), 17(5), 85-96.
  19. Chiarini, A. (2021). Industry 4.0 technologies in the manufacturing sector: are we sure they are all relevant for environmental performance? Business Strategy and the Environment, 30(7) 1-14. https://doi.org/10.1002/bse.2797 Go to original source...
  20. Cisco (2019). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update. Cisco, pp. 2017-2020.
  21. Collard, F., Fève, P., Portier, F. (2005). Electricity consumption and ICT in the French service sector. Energy Economics, 27(3), 541-550. https://doi.org/10.1016/j.eneco.2004.12.002 Go to original source...
  22. Coroamă, V. C., Mattern, F. (2019). Digital rebound - Why digitalization will not redeem us our environmental sins. ICT for Sustainability (ICT4S 2019). Finland, Lappeenranta.
  23. Delgado-Márquez, B. L., Hurtado-Torres, N. E., Pedauga, L. E., Cordón-Pozo, E. (2018). A network view of innovation performance for multinational corporation subsidiaries. Regional Studies, 52(1), 47-67. https://doi.org/10.1080/00343404.2016.1272756 Go to original source...
  24. Doran, J., Ryan, G. (2012). Regulation and firm perception, eco-innovation and firm performance. European Journal of Innovation Management, 15(4), 421-441. https://doi.org/10.1108/14601061211272367 Go to original source...
  25. Dubey, R., Gunasekaran, A., Childe, et al. (2019). Can big data and predictive analytics improve social and environmental sustainability? Technological Forecasting and Social Change, 144(C), 534-545. https://doi.org/10.1016/j.techfore.2017.06.020 Go to original source...
  26. El Massah, S., Mohieldin, M. (2020). Digital transformation and localizing the sustainable development goals (SDGs). Ecological Economics, 169(C), 106490. https://doi.org/10.1016/j.ecolecon.2019.106490 Go to original source...
  27. Fatimah, Y. A., Govindan, K., Murniningsih, R., Setiawan, A. (2020). Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: a case study of Indonesia. Journal of Cleaner Production, 269, 122263. https://doi.org/10.1016/j.jclepro.2020.122263 Go to original source...
  28. Faucheux, S., and Nicolaï, I. (2011). IT for green and green IT: a proposed typology of eco-innovation. Ecological Economics, 70(11), 2020-2027. Go to original source...
  29. https://doi.org/10.1016/j.ecolecon.2011.05.019 Go to original source...
  30. Reiss, R. (2020). After Q1 2020, digital transformation is no longer an option. Forbes. [Retrieved 2021-03-11] Avaiable et: https://www.forbes.com/sites/robertreiss/2020/03/30/after-q1-2020-digital-transformation-is-no-longer-an-option/
  31. Ford, S., Despeisse, M. (2016). Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. Journal of Cleaner Production, 137, 1573-1587. https://doi.org/10.1016/j.jclepro.2016.04.150 Go to original source...
  32. GeSI and Deloitte (2019). Digital with Purpose: Delivering a SMARTer2030. Brussels: GeSI. [2024-01-25] Avaiable at: https://www2.deloitte.com/content/dam/Deloitte/sg/Documents/financial-services/sg-fsi-sff-digital-with-purpose.pdf
  33. Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of Cleaner Production, 252(1), 119869. https://doi.org/10.1016/j.jclepro.2019.119869 Go to original source...
  34. Ghobakhloo, M., Fathi, M. (2021). Industry 4.0 and opportunities for energy sustainability. Journal of Cleaner Production, 295(7), 126427. https://doi.org/10.1016/j.jclepro.2021.126427 Go to original source...
  35. Gossart, C. (2015). Rebound effects and ICT: A review of the literature. In: Hilty, L. M., Aebischer, B., eds., ICT Innovations Sustainability. Advances in Intelligent Systems and Computing, Springer, 310, 439-444. https://doi.org/10.1007/978-3-319-09228-7_26 Go to original source...
  36. Godínez-Cira, I., Díaz-Aguirre, S., La Rosa-Baez, M., Hernandez-Díaz, R., Hevia-Lanier, F., Gómez-Baez, J. (2010). Indicadores para la evaluación del desempeno ambiental de los Centros de Educación Superior (CES). Revista CENIC Ciencias Quimicas, 41, 1-12.
  37. Grossman, G. M., Krueger, A. B. (1991). Environmental Impacts of a North American Free Trade Agreement. NBER. Working Paper No. 3914. Avaiable et: https://www.nber.org/system/files/working_papers/w3914/w3914.pdf Go to original source...
  38. Gupta, S., Chen, H., Hazen, B. T., Kaur, S., Santibañez-Gonzalez, E. D. S. (2019). Circular economy and big data analytics: a stakeholder perspective. Technological Forecasting and Social Change 144(C), 466-474. https.//doi.org/10.1016/j.techfore.2018.06.030 Go to original source...
  39. Gupta, H., Kumar, S., Kusi-Sarpong, S., Jabbour, C. J. C., and Agyemang, M. (2020). Enablers to supply chain performance on the basis of digitization technologies. Industrial Management and Data Systems (ahead-of-print). https://doi.org/10.1108/IMDS-07-2020-0421 Go to original source...
  40. Halkos, G., Petrou, K. N. (2019). Treating Undesirable Outputs in DEA: A Critical Review. Economic Analysis and Policy, 62(C), 97-104. https://doi.org/ 10.1016/j.eap.2019.01.005 Go to original source...
  41. Hartmann, J., Uhlenbruck, K. (2015). National institutional antecedents to corporate environmental performance. Journal of World Business, 50(4), 729-741. https://doi.org/10.1016/j.jwb.2015.02.001 Go to original source...
  42. Hartmann, J., Vachon, S. (2018). Linking environmental management to environmental performance: the interactive role of industry context. Business Strategy and the Environment, 27(3), 359-374. https://doi.org/10.1002/bse.2003 Go to original source...
  43. He, X., Zhang, Y. (2012). Technological Progress, Energy Conservation and Emission Reduction and Transformation of Development Mode - Based on the Empirical Investigation of 36 Industries in China. Quantitative Economics and Technical Economics Research, 29(03):19-33.
  44. Herring, H., Roy, R. (2007). Technological innovation, energy efficient design and the rebound effect. Technovation 27(4), 194-203. https://doi.org/https://doi.org/10.1016/j.technovation.2006.11.004 Go to original source...
  45. Honée, C., Hedin, D., St-Laurent, J., Fröling, M. (2012), September. Environmental performance of data centres - A case study of the Swedish national insurance administration. Joint international conference and exhibition proceedings. Fraunhofer Verlag, 1-6.
  46. Horbach, J. (2008). Determinants of environmental innovation: new evidence from German panel data. Research Policy, 37(1), 163-173. https://doi.org/10.1016/j.respol.2007.08.006 Go to original source...
  47. Howson, P. (2021). Distributed degrowth technology: challenges for blockchain beyond the green economy. Ecological Economics, 184, 107020. https://doi.org/10.1016/j.ecolecon.2021.107020 Go to original source...
  48. Huang, L., Lei, Z. (2021). How environmental regulation affect corporate green investment: Evidence from China. Journal of Cleaner Production, 279, 123560. https://doi.org/10.1016/j.jclepro.2020.123560 Go to original source...
  49. Huysveld, S., Hubo, S., Ragaert, K., Dewulf, J. (2019). Advancing circular economy benefit indicators and application on open-loop recycling of mixed and contaminated plastic waste fractions. Journal of Cleaner Production, 211, 1-13. https://doi.org/10.1016/j.jclepro.2018.11.110 Go to original source...
  50. IMD (2020). World Competitiveness Yearbook 2020. International Institute for Management Development. Avaible et: https://www.imd.org/research-knowledge/competitiveness/books/world-competitiveness-yearbook-2020
  51. International Renewable Energy Agency (2017a). Perspectives for Energy Transition: Investment Needs for a Low-Carbon Energy System. IREA.
  52. International Renewable Energy Agency (2017b). Digitalisation and Energy. IREA.
  53. Jabbour, D. S., Jabbour, A. B. L., Foropon, C. J. C., et al. (2018). When titans meet - can industry 4.0 revolutionise the environmentally sustainable manufacturing wave? The role of critical success factors. Technological Forecasting and Social Change, 132, 18-25. https://doi.org/10.1016/j.techfore.2018.01.017 Go to original source...
  54. Jahanshahloo, G. R., Lotfi, F. H., Shoja, et al. (2005). Undesirable Inputs and Outputs in DEA Models. Applied Mathematics and Computation, 169(2), 917-925. https://doi.org/10.1016/j.amc.2004.09.069 Go to original source...
  55. Jiang, H., Hua, M., Zhang, J., et al. (2019). Sustainability Efficiency Assessment of Wastewater Treatment Plants in China: a Data Envelopment Analysis Based on Cluster Benchmarking. Journal of Cleaner Production, 244, 1-10. https://doi.org/10.1016/j.jclepro.2019.118729 Go to original source...
  56. Jungmichel, N., Schampel, C., Weiss, D. (2017). Atlas on Environmental Impacts - Supply Chains - Environmental Impacts and Hot Spots in the Supply Chain. Adelphi/Systain, Berlin/Hamburg.
  57. Kamble, S. S., Gunasekaran, A., Gawankar, S. A. (2018). Sustainable industry 4.0 framework: a systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408-425. https://doi.org/10.1016/j.psep.2018.05.009 Go to original source...
  58. Kiel, D., Müller, J. M., Arnold, C., Voigt, K. I. (2020). Sustainable industrial value creation: benefits and challenges of industry 4.0. International Journal of Innovation Management, 21(8), 1-34. https://doi.org/10.1142/S1363919617400151 Go to original source...
  59. Korhonen, J., Honkasalo, A., Seppälä, J. (2018). Circular economy: the concept and its limitations. Ecological Economics, 143, 37-46. https://doi.org/10.1016/j.ecolecon.2017.06.041 Go to original source...
  60. Kshetri, N. (2018). Blockchain's roles in meeting key supply chain management objectives. International Journal of Information Management, 39, 80-89. https://doi.org/10.1016/j.ijinfomgt.2017.12.005 Go to original source...
  61. Kunkel, S., Matthess, M. (2020). Digital transformation and environmental sustainability in industry: putting expectations in Asian and African policies into perspective. Environmental Science and Policy, 112, 318-329. https://doi.org/10.1016/j.envsci.2020.06.022 Go to original source...
  62. Lange, S., Santarius, T. (2020). Smart Green World? Making Digitalization Work for Sustainability. Routledge. Lange, S., Pohl, J., Santarius, T., 2020. Digitalization and energy consumption. Does ICT reduce energy demand? Ecological Economics, 176(42). https://doi.org/10.1016/j.ecolecon.2020.106760 Go to original source...
  63. Latan, H., Jabbour, C. J. C., de Sousa Jabbour, A. B. L., et al. (2018). "Too-much-of-a-good-thing?" the role of advanced eco-learning and contingency factors on the relationship between corporate environmental and financial performance. Journal of Environmental Management, 220, 163-172. https://doi.org/10.1002/bse.2906 Go to original source...
  64. Leyva de la Hiz, D. I. (2019). Environmental innovations and policy network styles: the influence of pluralism and corporativism. Journal of Cleaner Production, 232, 839-847. https://doi.org/10.1016/j.jclepro.2019.06.034 Go to original source...
  65. Leyva de la Hiz, D. I., Hurtado-Torres, N., Bermúdez-Edo M. (2019). The heterogeneity of levels of green innovation by firms in international contexts: a study based on the home-country institutional profile. Organization and Environment, 32(4), 508-527. https://doi.org/10.1177/1086026618761623 Go to original source...
  66. Li, L, Zhao, C. (2021). A Study on the Relationship Between "the Integration of Manufacturing and Producer Service" and Carbon Emission Efficiency [J]. Economic Survey, 38(5), 71-9.
  67. Li, M., Wang, Q. (2017). Will technology advances alleviate climate change? Dual effects of technology change on aggregate carbon dioxide emissions. Energy for Sustainable Development, 41, 61-68. https://doi.org/10.1016/j.esd.2017.08.004 Go to original source...
  68. Li, X., Liu, J., Ni, P., 2021. The impact of the digital economy on CO2 emissions: a theoretical and empirical analysis. Sustainability, 13(13), 7267. https://doi.org/10.3390/su13137267 Go to original source...
  69. Lin, C. (2017). The relationship between fiscal decentralization and China's economic growth quality is based on the perspective of total factor productivity. Financial Research, 2, 73-83.
  70. Liu, M., Li, R. Y. M. (2024) Factors that Affect Individuals in using Digital Currency Electronic Payment In China: SEM and fsQCA Approaches. International Review of Economics and Finance, 95(5), 103418. https://doi.org/10.1016/j.iref.2024.103418 Go to original source...
  71. Liu, S., Park, S. H., Choi, Y. S., Yeo, G. T. (2022) Efficiency evaluation of major container terminals in the top three cities of the Pearl River Delta using SBM-DEA and undesirable DEA. The Asian Journal of Shipping and Logistics, 38(1), 99-106. https://doi.org/10.1016/j.ajsl.2022.03.001 Go to original source...
  72. Ma, Y., Zhang, Q., Yin, Q. (2021). Top management team faultlines, green technology innovation and firm financial performance. Journal of Environmental Management, 285, 112095. https://doi.org/10.1016/j.jenvman.2021.112095 Go to original source...
  73. Masanet, E. R., Brown, R. E., Shehabi, A., et al. (2011). Estimating The Energy Use. Proceedings of the IEEE, 99(8), 1440-1453. https://doi.org/10.1109/JPROC.2011.2155610 Go to original source...
  74. Mitchell-Jackson, J., Koomey, J. G., Nordman, B., Blazek, M. (2003). Data center power requirements: Measurements from Silicon Valley. Energy, 28(8), 837-850. https://doi.org/10.1016/S0360-5442(03)00009-4 Go to original source...
  75. Mohebali, S., Maghsoudy, S., Doulati, F. (2020). Application of Data Envelopment Analysis in Environmental Impact Assessment of a Coal Washing Plant: a New Sustainable Approach. Environmental Impact Assessment Review, 83(1), 106389. https://doi.org/10.1016/j.eiar.2020.106389 Go to original source...
  76. Müslüm, P., Enes, Y., Mesut, A. (2024). Impact of Financial Globalization on Financial Development in Developed and Developing Countries. Politická ekonomie, 72(4), 702-726. https://doi.org/10.18267/j.polek.1436 Go to original source...
  77. Nascimento, D. L. M., Alencastro, V., Quelhas, O. L. G., et al. (2019). Exploring industry 4.0 technologies to enable circular economy practices in a manufacturing context: a business model proposal. Journal of Manufacturing Technology Management, 30(3), 607-627. https://doi.org/10.1108/JMTM-03-2018-0071 Go to original source...
  78. Liu, R., Koehler, AA., Gailhofer, P. et al. (2019). Impacts of the digital transformation on the environment and sustainability. Freiburg: Öko-Institut.
  79. Oregi, A., Galera, J. (2013). Indice de Rendimiento ambiental EPI, EUSKADI. New Haven, CT: Yale University Press.
  80. Pierce, J. R., Aguinis, H. (2013). The too-much-of-a-good-thing effect in management. Journal of Management, 39(2), 313-338. https://doi.org/10.1177/0149206311410060 Go to original source...
  81. Plepys, A. (2002). The grey side of ICT. Environmental Impact Assessment Review, 22(5): 509-523. https://doi.org/10.1016/S0195-9255(02)00025-2 Go to original source...
  82. PwC Microsoft (2017). How Finland is Embracing Digital Transformation - Digital Challenges and Successes Showcased. [Retrieved 2021-03-11] Available at: https://info.microsoft.com/rs/157-GQE-382/images/How%20Finland%20is%20embracing%20digital%20transformation2.pdf
  83. Quiroga, R. (2001). Indicadores de sostenibilidad ambiental y de desarrollo sostenible: estado del arte y perspectivas. Santiago de Chile: Naciones Unida. ISBN 92-1-321911-3.
  84. Queiroz, M. M., Wamba, S. F. (2019). Blockchain adoption challenges in supply chain: an empirical investigation of the main drivers in India and the USA. International Journal of Information Management, 46, 70-82. https://doi.org/10.1016/j.ijinfomgt.2018.11.021 Go to original source...
  85. Rajput, S., Singh, S. P. (2019). Connecting circular economy and industry 4.0. International Journal of Information Management, 49, 98-113. https://doi.org/10.1016/j.ijinfomgt.2019.03.002 Go to original source...
  86. Rashidi, K., Saen, R. F. (2015). Measuring Eco-Efficiency Based on Green Indicators and Potentials in Energy-Saving and Undesirable Output Abatement. Energy Economics, 50, 18-26. https://doi.org/10.1016/j.eneco.2015.04.018 Go to original source...
  87. Rehfeld, K. M., Rennings, K., Ziegler, A. (2007). Integrated product policy and environmental product. Ecological Economics, 61(1), 91-100. Go to original source...
  88. Santarius, T., Pohl, J., Lange, S. (2020). Digitalization and the decoupling debate: can ICT help to reduce environmental impacts while the economy keeps growing? Sustainability, 12(18), 7496. https://doi.org/10.3390/su12187496 Go to original source...
  89. Schulte, P., Welsch, H., Rexhäuser, S. (2016). ICT and the demand for energy: evidence from OECD countries. Environmental and Resource Economics, 63(1), 119-146. https://doi.org/10.1007/s10640-014-9844-2 Go to original source...
  90. Seiford, L. M., and Zhu, J. (2002). Modeling Undesirable Factors in Efficiency Evaluation. European Journal of Operational Research, 142(1), 16-20. Go to original source...
  91. Shabani, A., Torabipour, S. M. R., Farzipoor Saen, R., Khodakarami, M. (2015). Distinctive Data Envelopment Analysis Model for Evaluating Global Environment Performance. Applied Mathematical Modelling, 39(15), 4385-4404. https://doi.org/10.1016/j.apm.2014.12.053 Go to original source...
  92. Tobin, J. (1958) Liquidity Preference as Behavior towards Risk. Review of Economic Studies, 25(2), 65-86. https://doi.org/10.2307/2296205 Go to original source...
  93. Tufail, M., Song, L., Khan, Z. (2024). Green finance and green growth nexus: evaluating the role of globalization and human capital. Journal of Applied Economics, 27(1), 2309437. https://doi.org/10.1080/15140326.2024.2309437 Go to original source...
  94. Tufail, M., Song, L., Wang, W., et al. (2024). Race to Top or Race to Bottom Approach: Disaggregated Effect of Fiscal Decentralization and Its Implications for Consumption-Based Carbon Emissions. Journal of the Knowledge Economy, 15, 15243-15277. https://doi.org/10.1007/s13132-023-01690-2 Go to original source...
  95. Wagner U. J., Timmins C. D. (2009). Agglomeration effects in foreign direct investment and the pollution haven hypothesis. Environmental and Resource Economics, 43(2): 231-256. https://doi.org/10.1007/s10640-008-9236-6 Go to original source...
  96. Waibel, M. W., Steenkamp, M. W., Moloko, L. P., Oosthuizen, G. A. (2017). Investigating the effects of smart production systems on sustainability elements. Procedia Manufacturing, 8, 731-737. https://doi.org/10.1016/j.promfg.2017.02.094. Go to original source...
  97. Wang, K. H., Umar, M., Akram, R., Caglar, E. (2021). Is technological innovation making world "greener"? An evidence from changing growth story of China. Technological Forecasting and Social Change, 165, 120516. https://doi.org/10.1016/j.techfore.2020.120516 Go to original source...
  98. Wang, G., Gunasekaran, A., Ngai, E. W., Papadopoulos, T. (2016a). Big data analytics in logistics and supply chain management: certain investigations for research and applications. International Journal of Production Economics, 176, 98-110. https://doi.org/10.1016/j.ijpe.2016.03.014. Go to original source...
  99. Wang, S., Wan, J. D., Zhang, C. (2016b). Implementing smart factory of industry 4.0: an outlook. International Journal of Distributed Sensor Networks, 12(1). https://doi.org/10.1155/2016/31598 Go to original source...
  100. Wang, S., Cheng, M., Zhang, W., Yang, Y. (2024).A Study on the Impact of the Digital Economy on China's Carbon Neutrality Capability. East China Economic Management, 38(7): 103-116. https://doi.org/10.19629/j.cnki.34-1014/f.231202002 Go to original source...
  101. Wen, Q., Hong, J., Liu, G., Xu, P., Tang, M., and Li, Z. (2019). Regional Efficiency Disparities in China's Construction Sector: Combination of Multiregional Input-Output and Data Envelopment Analyses. Applied Energy, 257, 113964. https://doi.org/10.1016/j.apenergy.2019.113964 Go to original source...
  102. World Bank (2020). Accelerating Digitization: Critical Actions to Strengthen the Resilience of the Maritime Supply Chain. Washington, DC: World Bank. Go to original source...
  103. Wu, Y., Luo, C., Luo, L. (2021) The impact of the development of the digital economy on Sulfur Dioxide emissions: Empirical evidence based on provincial panel data. Journal of Wuhan Polytechnic University, 20, 82-88.
  104. Xia, J., Zhan, X., Li R. Y. M., Song L. (2022) The Relationship Between Fiscal Decentralization and China's Low-carbon Environmental Governance Performance: The Malmquist Index, an SBM-DEA and Systematic GMM Approaches. Frontiers in Environmental Sciences, 10, 945922. https://doi.org/10.3389/fenvs.2022.945922 Go to original source...
  105. Song, D., Yi, C. (2011). Foreign direct investment and China's carbon emissions. China Population,Resources and Environment, 1, 100-107.
  106. Xu, Y., Sun, J. (2009). Integration of Information Industry and Manufacturing Industry - Research Based on Performance Analysis. China Industrial Economics, 7, 56-66.
  107. Li, Y., Lean, H. H., Chen, Y. (2024). Comparative Analysis of Technological Innovation in Chinese Cities: Pre and Post-Government Green Performance Assessment. Politická ekonomie, 72(2), 403-430. https://doi.org/10.18267/j.polek.1440 Go to original source...
  108. You, S., Yan, H. (2011). A New Approach in Modelling Undesirable Output in DEA Model. Journal of the Operational Research Society, 62(12), 2146-2156. https://doi.org/10.1057/jors.2011.1 Go to original source...
  109. Zeng, Y., Guo, W., Wang, H., Zhang, F. (2019). A Two-Stage Evaluation and Optimization Method for Renewable Energy Development Based on Data Envelopment Analysis. Applied Energy, 262, 114363. https://doi.org/10.1016/j.apenergy.2019.114363 Go to original source...
  110. Zhou, X., Zhou, D., Wang, Q. (2018). How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis. Energy 151, 748-759.https://doi.org/10.1016/j.energy.2018.03.115 Go to original source...
  111. Zhou, H., Li, X. (2012). Tobit Model Estimation Method and Application. Economic Dynamics, 5, 105-119.
  112. Zhou, Q., Tang, S. (2017). Public Satisfaction of Media Use and Government Environmental Governance Performance: An Empirical Study Based on Nationally Representative Data. Journal of Beijing University of Technology (Social Sciences Edition), 1, 162-168.
  113. Zhu C., Liu, R., Wang, H. (2018). Green innovation performance evaluation and promotion path of patent-intensive industries. Quantitative Economics and Technical Economics Research, 35(4), 61-79.
  114. Zhu, J. (2009). Quantitative models for performance evaluation and benchmarking: data envelopment analysis with spreadsheets (Vol. 2). New York: Springer. Go to original source...
  115. Zink, T., Geyer, R. (2017). Circular economy rebound. Journal of Industrial Ecology, 21(3), 593-602. https://doi.org/10.1111/jiec.12545 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.