Politická ekonomie 2024, 72(3):478-500 | DOI: 10.18267/j.polek.1415

Long Memory in Clean Energy Exchange Traded Funds

Arife Özdemir Höl ORCID...
Department of Finance and Banking, Burdur Mehmet Akif Ersoy University, Turkey

This study aims to investigate whether clean energy exchange traded funds (ETFs) exhibit long-term memory properties and whether the efficient market hypothesis is valid for these assets. The results of the model established to test the dual long memory indicate the existence of long memory in both return and volatility of the ICLN, PBD, PBW series, while the long memory feature is found only in the volatility of the other variables. The results reveal that the selected clean energy ETFs do not exhibit weak efficient market characteristics and volatility has a predictable structure. These results mean that by using the past price movements of clean energy ETFs, future price movements can be predicted and thus above-normal returns can be obtained. In addition, it can be said that risks and uncertainties are effective on the price movements of clean energy ETFs. These results are important for portfolio managers, hedgers and individual and institutional investors aiming to direct their investments to the renewable energy market, as well as for policymakers.

JEL classification: C22, C58, G14, Q42

Received: June 3, 2023; Revised: September 27, 2023; Accepted: October 3, 2023; Prepublished online: April 25, 2024; Published: June 24, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Höl, A.Ö. (2024). Long Memory in Clean Energy Exchange Traded Funds. Politická ekonomie72(3), 478-500. doi: 10.18267/j.polek.1415
Download citation

References

  1. Ahmad, W. (2017). On the Dynamic Dependence and Investment Performance of Crude Oil and Clean Energy Stocks. Research in International Business and Finance, 42, 376-389. https://doi.org/10.1016/j.ribaf.2017.07.140 Go to original source...
  2. Ahmad, W., Sadorsky, P., Sharma, A. (2018). Optimal Hedge Ratios for Clean Energy Equities. Economic Modelling, 72, 278-295. https://doi.org/10.1016/j.econmod.2018.02.008 Go to original source...
  3. Alfeus, M., Nikitopoulos, C. S. (2022). Forecasting Volatility in Commodity Markets with Long-Memory Models. Journal of Commodity Markets, 28, 100248. https://doi.org/10.1016/j.jcomm.2022.100248 Go to original source...
  4. Aloui, C., Shahzad, S. J. H., Jammazi, R. (2018). Dynamic Efficiency of European Credit Sectors: A Rolling-Window Multifractal Detrended Fluctuation Analysis. Physica A: Statistical Mechanics and its Applications, 506, 337-349. https://doi.org/10.1016/j.physa.2018.04.039 Go to original source...
  5. Arouri, M. E. H., Hammoudeh, S., Lahiani, A., et al. (2012). Long Memory and Structural Breaks in Modeling the Return and Volatility Dynamics of Precious Metals. The Quarterly Review of Economics and Finance, 52(2), 207-218. https://doi.org/10.1016/j.qref.2012.04.004 Go to original source...
  6. Baillie, R. T. (1996). Long Memory Processes and Fractional Integration in Econometrics. Journal of Econometrics, 73(1), 5-59. https://doi.org/10.1016/0304-4076(95)01732-1 Go to original source...
  7. Baillie, R. T., Chung, C. F., Tieslau, M. A. (1996a). Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model. Journal of Applied Econometrics, 11(1), 23-40. Go to original source...
  8. Baillie, R. T., Bollerslev, T., Mikkelsen, H. O. (1996b). Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 74(1), 3-30. https://doi.org/10.1016/s0304-4076(95)01749-6 Go to original source...
  9. Baillie, R. T., Han, Y. W., Myers, R. J., et al. (2007a). Long Memory Models for Daily and High Frequency Commodity Futures Returns. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 27(7), 643-668. https://doi.org/10.1002/fut.20267 Go to original source...
  10. Baillie, R. T., Han, Y. W., Myers, R. J., et al. (2007b). Long Memory and FIGARCH Models for Daily and High Frequency Commodity Prices. Queen Mary University of London Working Paper No. 594. ISSN 1473-0278.
  11. Barkoulas, J. T., Baum, C. F. (1996). Long-Term Dependence in Stock Returns. Economics Letters, 53(3), 253-259. https://doi.org/10.1016/s0165-1765(96)00935-4 Go to original source...
  12. Barkoulas, J. T., Baum, C. F. (1997). Long Memory and Forecasting in Euroyen Deposit Rates. Financial Engineering and the Japanese Markets, 4(3), 189-201. https://doi.org/10.1023/a:1009630017314 Go to original source...
  13. Barkoulas, J. T., Travlos, N. G., Baum, C. F. (2000a). Long Memory in the Greek Stock Market. Applied Financial Economics, 10(2), 177-184. https://doi.org/10.2139/ssrn.33672 Go to original source...
  14. Barkoulas, J. T., Baum, C. F., Caglayan, M., et al. (2000b). Persistent Dependence in Foreign Exchange Rates? A Reexamination. Boston College Working Papers in Economics No. 377.
  15. Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1 Go to original source...
  16. Bollerslev, T., Mikkelsen, H. O. (1996). Modeling and Pricing Long Memory in Stock Market Volatility. Journal of Econometrics, 73(1), 151-184. https://doi.org/10.1016/0304-4076(95)01736-4 Go to original source...
  17. Bondia, R., Ghosh, S., Kanjilal, K. (2016). International Crude Oil Prices and the Stock Prices of Clean Energy and Technology Companies: Evidence from Non-Linear Cointegration Tests with Unknown Structural Breaks. Energy, 101, 558-565. https://doi.org/10.1016/j.energy.2016.02.031 Go to original source...
  18. Boubaker, H., Saidane, B., Ben Saad Zorgati, M. (2022). Modelling the Dynamics of Stock Market in the Gulf Cooperation Council Countries: Evidence on Persistence to Shocks. Financial Innovation, 8(1), 1-22. https://doi.org/10.1186/s40854-022-00348-3 Go to original source...
  19. Bouri, E. (2023). Spillovers in the Joint System of Conditional Higher-Order Moments: US Evidence from Green Energy, Brown Energy, and Technology Stocks. Renewable Energy, 210, 507-523. https://doi.org/10.1016/j.renene.2023.04.006 Go to original source...
  20. Caporale, G. M., Gil-Alana, L., Plastun, A. (2019). Long Memory and Data Frequency in Financial Markets. Journal of Statistical Computation and Simulation, 89(10), 1763-1779. https://doi.org/10.1080/00949655.2019.1599377 Go to original source...
  21. Chang, C. L., Mcaleer, M., Tansuchat, R. (2012). Modelling Long Memory Volatility in Agricultural Commodity Futures Returns. Annals of Financial Economics, 7(2), 1250010. https://doi.org/10.1142/s2010495212500108 Go to original source...
  22. Cheah, E. T., Mishra, T., Parhi, M., et al. (2018). Long Memory Interdependency and Inefficiency in Bitcoin Markets. Economics Letters, 167, 18-25. https://doi.org/10.1016/j.econlet.2018.02.010 Go to original source...
  23. Chen, J. H., Diaz, J. F. (2013). Long Memory and Shifts in the Returns of Green and Non-Green Exchange-Traded Funds (ETFS). International Journal of Humanities and Social Science Invention, 2(10), 29-32.
  24. Chung, H., Lin, W. T., Wu, S. (2000). An Analysis of Long Memory in Volatility for Asian Stock Markets. Review of Pacific Basin Financial Markets and Policies, 3(3), 309-330. https://doi.org/10.1142/s0219091500000200 Go to original source...
  25. Choi, G., Park, K., Yi, E., et al. (2023). Price Fairness: Clean Energy Stocks and the Overall Market. Chaos, Solitons & Fractals, 168, 113049, 1-9. https://doi.org/10.1016/j.chaos.2022.113049 Go to original source...
  26. Christensen, B. J., Nielsen, M. Ø., Zhu, J. (2010). Long Memory in Stock Market Volatility and the Volatility-in-Mean Effect: The FIEGARCH-M Model. Journal of Empirical Finance, 17(3), 460-470. https://doi.org/10.1016/j.jempfin.2009.09.008 Go to original source...
  27. Christodoulou-Volos, C., Siokis, F. M. (2006). Long Range Dependence in Stock Market Returns. Applied Financial Economics, 16(18), 1331-1338. https://doi.org/10.1080/09603100600829519 Go to original source...
  28. Cochran, S. J., Mansur, I., Odusami, B. (2019). Long Memory and Asymmetry in Commodity Returns and Risk: The Role of Term Spread. In: Chevallier, J., Goutte, S., Guerreiro, D. Financial Mathematics, Volatility and Covariance Modelling, 9-38. London: Routledge. ISBN 9781315162737. Go to original source...
  29. Conrad, C., Karanasos, M., Zeng, N. (2011). Multivariate Fractionally Integrated APARCH Modeling of Stock Market Volatility: A Multi-Country Study. Journal of Empirical Finance, 18(1), 147-159. https://doi.org/10.1016/j.jempfin.2010.05.001 Go to original source...
  30. Coakley, J., Dollery, J., Kellard, N. (2010). Long Memory and Structural Breaks in Commodity Futures. Journal of Futures Markets, 31(11), 1076-1113. https://doi.org/10.1002/fut.20502 Go to original source...
  31. Çelik, İ., Sak, A. F., Höl, A. Ö., et al. (2022). The Dynamic Connectedness and Hedging Opportunities of Implied and Realized Volatility: Evidence from Clean Energy ETFs. The North American Journal of Economics and Finance, 60, 101670. https://doi.org/10.1016/j.najef.2022.101670 Go to original source...
  32. Davidson, J. (2004). Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and A New Model. Journal of Business & Economic Statistics, 22(1), 16-29. https://doi.org/10.1198/073500103288619359 Go to original source...
  33. Dawar, I., Dutta, A., Bouri, E., et al. (2021). Crude Oil Prices and Clean Energy Stock Indices: Lagged and Asymmetric Effects with Quantile Regression. Renewable Energy, 163, 288-299. https://doi.org/10.1016/j.renene.2020.08.162 Go to original source...
  34. Di Febo, E., Foglia, M., Angelini, E. (2021). Tail Risk and Extreme Events: Connections between Oil and Clean Energy. Risks, 9(2), 39. https://doi.org/10.3390/risks9020039 Go to original source...
  35. Dias, R., Heliodoro, P., Alexandre, P., et al. (2021). Long Memory in Stock Returns: Evidence from the Eastern European Markets. In: SHS Web of Conferences, 91, 01029). Online. https://doi.org/10.1051/shsconf/20219101029 Go to original source...
  36. Dias, R., Horta, N., Chambino, M. (2023). Clean Energy Action Index Efficiency: An Analysis in Global Uncertainty Contexts. Energies, 16(9), 3937, 1-18. https://doi.org/10.3390/en16093937 Go to original source...
  37. Ding Z., Granger C. W. J., Engle R. F. (1993). A Long Memory Property of Stock Market Returns and A New Model. Journal of Empirical Finance, 1, 83-106. https://doi.org/10.1016/0927-5398(93)90006-d Go to original source...
  38. Dutta, A. (2017). Oil Price Uncertainty and Clean Energy Stock Returns: New Evidence from Crude Oil Volatility Index. Journal of Cleaner Production, 164, 1157-1166. https://doi.org/10.1016/j.jclepro.2017.07.050 Go to original source...
  39. Dutta, A., Bouri, E., Noor, M. H. (2018). Return and Volatility Linkages Between CO2 Emission and Clean Energy Stock Prices. Energy, 164, 803-810. https://doi.org/10.1016/j.energy.2018.09.055 Go to original source...
  40. Dutta, A., Bouri, E., Saeed, T., et al. (2020). Impact of Energy Sector Volatility on Clean Energy Assets. Energy, 212, 118657. https://doi.org/10.1016/j.energy.2020.118657 Go to original source...
  41. Elder, J., Jin, H. J. (2007). Long Memory in Commodity Futures Volatility: A Wavelet Perspective. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 27(5), 411-437. https://doi.org/10.1002/fut.20260 Go to original source...
  42. Elie, B., Naji, J., Dutta, A., et al. (2019). Gold and Crude Oil As Safe-Haven Assets for Clean Energy Stock Indices: Blended Copulas Approach. Energy, 178, 544-553. https://doi.org/10.1016/j.energy.2019.04.155 Go to original source...
  43. Engle, R. F. (1982). Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation. Econometrica, 50, 987-1008. Go to original source...
  44. Engle, R. F. Bollerslev, T. (1986). Modelling the Persistence of Conditional Variances. Econometric Reviews, 5, 1-50. https://doi.org/10.1080/07474938608800095 Go to original source...
  45. Fahmy, H. (2022). Clean Energy Deserves to Be An Asset Class: A Volatility-Reward Analysis. Economic Modelling, 106, 105696. https://doi.org/10.1016/j.econmod.2021.105696 Go to original source...
  46. Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Works. The Journal of Finance, 25(2), 383-417. https://doi.org/10.2307/2325486 Go to original source...
  47. Ferrer, R., Shahzad, S. J. H., López, R., et al. (2018). Time and Frequency Dynamics of Connectedness Between Renewable Energy Stocks and Crude Oil Prices. Energy Economics, 76, 1-20. https://doi.org/10.1016/j.eneco.2018.09.022 Go to original source...
  48. Fuentes, F., Herrera, R. (2020). Dynamics of Connectedness in Clean Energy Stocks. Energies, 13(14), 3705. https://doi.org/10.3390/En13143705 Go to original source...
  49. Geweke J., Porter-Hudak S. (1983). The Estimation and Application of Long Memory Time Series Models. Journal of Time Series Analysis, 4(4), 221-238. https://doi.org/10.1111/j.1467-9892.1983.tb00371.x Go to original source...
  50. Ghosh, B., Bouri, E. (2022). Long Memory and Fractality in the Universe of Volatility Indices. Complexity in Financial Markets, 2022, 1-8. https://doi.org/10.1155/2022/6728432 Go to original source...
  51. Glosten, L. R., Jagannathan, R., Runkle, D. (1993). On the Relation Between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. Journal of Finance, 48(5), 1779-1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x Go to original source...
  52. Granger, C. W. J. (1980). Long Memory Relationships and the Aggregation of Dynamic Models. Journal of Econometrics, 14(2), 227-238. https://doi.org/10.1016/0304-4076(80)90092-5 Go to original source...
  53. Granger, C. W. J., Joyeux, R. (1980). An Introduction to Long-Memory Time Series Models and Fractional Differencing. Journal of Time Series Analysis, 1(1), 15-29. https://doi.org/10.1111/j.1467-9892.1980.tb00297.x Go to original source...
  54. Gustafsson, R., Dutta, A., Bouri, E. (2022). Are Energy Metals Hedges or Safe Havens for Clean Energy Stock Returns? Energy, 244(A), 122708, 1-18. https://doi.org/10.1016/j.energy.2021.122708 Go to original source...
  55. Han, C., Wang, Y., Ning, Y. (2019). Comparative Analysis of the Multifractality and Efficiency of Exchange Markets: Evidence from Exchange Rates Dynamics of Major World Currencies. Physica A: Statistical Mechanics and Its Applications, 535, 122365. https://doi.org/10.1016/j.physa.2019.122365 Go to original source...
  56. Henriques, I., Sadorsky, P. (2008). Oil Prices and the Stock Prices of Alternative Energy Companies. Energy Economics, 30(3), 998-1010. https://doi.org/10.1016/j.eneco.2007.11.001 Go to original source...
  57. Hosking, J. R. M. (1981). Fractional Differencing. Biometrika, 68(1), 165-176. https://doi.org/10.2307/2335817 Go to original source...
  58. Hosking, J. R. M. (1985). Fractional Differencing Modeling in Hydrology 1. JAWRA Journal of the American Water Resources Association, 21(4), 677-682. https://doi.org/10.1111/j.1752-1688.1985.tb05382.x Go to original source...
  59. Hurst H. (1951). Long Term Storage Capacity of Reservoirs. Transactions of the American Society of Civil Engineers, 116, 770-799. https://doi.org/10.1061/taceat.0006518 Go to original source...
  60. Inchauspe, J., Ripple, R. D., Trück, S. (2015). The Dynamics of Returns on Renewable Energy Companies: A State-Space Approach. Energy Economics, 48, 325-335. https://doi.org/10.1016/j.eneco.2014.11.013 Go to original source...
  61. IEA (2022). World Energy Investment 2022. [Retrieved 2022-08-07] Available at: https://iea.blob.core.windows.net/assets/b0beda65-8a1d-46ae-87a2-f95947ec2714/worldenergyinvestment2022.pdf
  62. IRENA and CPI (2020). Global Landscape of Renewable Energy Finance 2020. Abu Dhabi: International Renewable Energy Agency. ISBN 978-92-9260-523-0.
  63. Jenkins, N. T., Kimbrough, M. D., Wang, J. (2016). The Extent of Informational Efficiency in the Credit Default Swap Market: Evidence from Post-Earnings Announcement Returns. Review of Quantitative Finance and Accounting, 46(4), 725-761. https://doi.org/10.1007/S11156-014-0484-Y Go to original source...
  64. Jiang, Y., Nie, H., Ruan, W. (2018). Time-Varying Long-Term Memory in Bitcoin Market. Finance Research Letters, 25, 280-284. https://doi.org/10.1016/j.frl.2017.12.009 Go to original source...
  65. Jin, H. J., Elder, J., Koo, W. W. (2006). A Reexamination of Fractional Integrating Dynamics in Foreign Currency Markets. International Review of Economics & Finance, 15(1), 120-135. https://doi.org/10.1016/j.iref.2004.08.005 Go to original source...
  66. Kang, S. H., Yoon, S. M. (2007). Long Memory Properties in Return and Volatility: Evidence from the Korean Stock Market. Physica A: Statistical Mechanics and Its Applications, 385(2), 591-600. https://doi.org/10.1016/j.physa.2007.07.051 Go to original source...
  67. Kang, S. H., Mclver, R., Park, S. Y., et al. (2014). Long Memory Features Evolve in the Time-Varying Process in Asia-Pacific Foreign Exchange Markets. Procedia Economics and Finance, 14, 286-294. https://doi.org/10.1016/s2212-5671(14)00714-x Go to original source...
  68. Kasman, A., Torun, E. (2007). Long Memory in the Turkish Stock Market Return and Volatility. Central Bank Review, 2(2), 13-27.
  69. Kumar, S., Managi, S., Matsuda, A. (2012). Stock Prices of Clean Energy Firms, Oil and Carbon Markets: A Vector Autoregressive Analysis. Energy Economics, 34(1), 215-226. https://doi.org/10.1016/j.eneco.2011.03.002 Go to original source...
  70. Lo, A. W. (1991). Long Term Memory in Stock Market Prices. Econometrica, 59(5), 1279-1313. https://doi.org/10.2307/2938368 Go to original source...
  71. Maghyereh, A. I., Awartani, B., Abdoh, H. (2019). The Co-Movement Between Oil and Clean Energy Stocks: A Wavelet-Based Analysis of Horizon Associations. Energy, 169, 895-913. https://doi.org/10.1016/j.energy.2018.12.039 Go to original source...
  72. Managi, S., Okimoto, T. (2013). Does the Price of Oil Interact with Clean Energy Prices in the Stock Market? Japan and the World Economy, 27, 1-9. https://doi.org/10.1016/j.japwor.2013.03.003 Go to original source...
  73. Mandelbrot, B. B., Van Ness, J. (1968). Fractional Brownian Motion, Fractional Noises and Applications. SIAM Review, 10(4), 422-437. Go to original source...
  74. Mandelbrot, B. B., Wallis, J. R. (1969). Robustness of the Rescaled Range R/S in the Measurement of Noncyclic Long Run Statistical Dependence. Water Resources Research, 5(5), 967-988. https://doi.org/10.1029/wr005i005p00967 Go to original source...
  75. Mandelbrot, B. B. (1972). Statistical Methodology for Nonperiodic Cycles: From the Covariance to R/S Analysis. Annals of Economic and Social Measurements, 1, 259-290.
  76. Mandelbrot, B. B. (1975). Limit Theorems on the Self-Normalized Range for Weakly and Strongly Dependent Processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 33(3), 271-285. Go to original source...
  77. Malinda, M., Hui, C. J. (2016). The Study of the Long Memory in Volatility of Renewable Energy Exchange-Traded Funds (ETFs). Journal of Economics, Business and Management, 4(4), 252-257. https://doi.org/10.18178/joebm.2016.4.4.400 Go to original source...
  78. Malinda, M. (2017). Long Memory in Asymmetric Volatility of ASEAN Exchange-Traded Funds. International Journal of Trade, Economics and Finance, 8(2). https://doi.org/10.18178/ijtef.2017.8.2.543 Go to original source...
  79. Mensi, W., Lee, Y. J., Al-Yahyaee, K. H., et al. (2019). Intraday Downward/Upward Multifractality and Long Memory in Bitcoin and Ethereum Markets: An Asymmetric Multifractal Detrended Fluctuation Analysis. Finance Research Letters, 31, 19-25. https://doi.org/10.1016/j.frl.2019.03.029 Go to original source...
  80. Nasreen, S., Tiwari, A. K., Eizaguirre, J. C., et al. (2020). Dynamic Connectedness Between Oil Prices and Stock Returns of Clean Energy and Technology Companies. Journal of Cleaner Production, 260, 121015. https://doi.org/10.1016/j.jclepro.2020.121015 Go to original source...
  81. Narayan, P. K., Smyth, R. (2004). Is South Korea's Stock Market Efficient?. Applied Economics Letters, 11(11), 707-710. https://doi.org/10.1080/1350485042000236566 Go to original source...
  82. Nelson, D. B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59(2), 347-370. https://doi.org/10.2307/2938260 Go to original source...
  83. Paul, R. K., Samanta, S., Gurung, B. (2015). Monte Carlo Simulation for Comparison of Different Estimators of Long Memory Parameter: An Application of ARFIMA Model for Forecasting Commodity Price. Model Assisted Statistics and Applications, 10(2), 117-128. https://doi.org/10.3233/mas-140317 Go to original source...
  84. Reboredo, J. C. (2015). Is There Dependence and Systemic Risk Between Oil and Renewable Energy Stock Prices? Energy Economics, 48, 32-45. https://doi.org/10.1016/j.eneco.2014.12.009 Go to original source...
  85. Reboredo, J. C., Quintela, M., Otero, L. A. (2017a). Do Investors Pay A Premium for Going Green? Evidence from Alternative Energy Mutual Funds. Renewable and Sustainable Energy Reviews, 73, 512-520. https://doi.org/10.1016/j.rser.2017.01.158 Go to original source...
  86. Reboredo, J. C., Rivera-Castro, M. A., Ugolini, A. (2017b). Wavelet-Based Test of Co-Movement and Causality Between Oil and Renewable Energy Stock Prices. Energy Economics, 61, 241-252. https://doi.org/10.1016/j.eneco.2016.10.015 Go to original source...
  87. Sadique, S., Silvapulle, P. (2001). Long-term Memory in Stock Market Returns: International Evidence. International Journal of Finance & Economics, 6(1), 59-67. https://doi.org/10.1002/ijfe.143 Go to original source...
  88. Sadorsky, P. (2012). Correlations and Volatility Spillovers Between Oil Prices and the Stock Prices of Clean Energy and Technology Companies. Energy Economics, 34(1), 248-255. https://doi.org/10.1016/j.eneco.2011.03.006 Go to original source...
  89. Saeed, T., Bouri, E., Tran, D. K. (2020). Hedging Strategies of Green Assets Against Dirty Energy Assets. Energies, 13(12), 3141, 1-17. https://doi.org/10.3390/en13123141 Go to original source...
  90. Saeed, T., Bouri, E., Alsulami, H. (2021). Extreme Return Connectedness and its Determinants Between Clean/Green and Dirty Energy Investments. Energy Economics, 96, 105017, 1-14. https://doi.org/10.1016/j.eneco.2020.105017 Go to original source...
  91. Saleem, K. (2014). Modeling Long Memory in the Russian Stock Market: Evidence from Major Sectoral Indices. Journal of Applied Business Research (JABR), 30(2), 567-574. https://doi.org/10.19030/jabr.v30i2.8426 Go to original source...
  92. Saleem, K., Al-Hares, O. (2018). Measuring the Market Efficiency of Energy Exchange-Traded Funds (ETFs). Theoretical Economics Letters, 8(6), 1247-1256. https://doi.org/10.4236/tel.2018.86082 Go to original source...
  93. Shahzad, S. J. H., Hernandez, J. A., Hanif, W., et al. (2018). Intraday Return Inefficiency and Long Memory in the Volatilities of Forex Markets and the Role of Trading Volume. Physica A: Statistical Mechanics and Its Applications, 506, 433-450. https://doi.org/10.1016/j.physa.2018.04.016 Go to original source...
  94. Shahzad, S. J. H., Bouri, E., Kayani, G. M., et al. (2020). Are Clean Energy Stocks Efficient? Asymmetric Multifractal Scaling Behaviour. Physica A: Statistical Mechanics and its Applications, 550, 124519, 1-14. https://doi.org/10.1016/j.physa.2020.124519 Go to original source...
  95. Tan, Z., Fu, Y., Cheng, H., et al. (2020). Stock Prices' Long Memory in China and the United States. International Journal of Emerging Markets, 17(5), 1292-1314. https://doi.org/10.1108/IJOEM-11-2019-0921 Go to original source...
  96. Tiwari, A. K., Abakah, E. J. A., Gabauer, D., et al. (2022). Dynamic Spillover Effects Among Green Bond, Renewable Energy Stocks and Carbon Markets During COVID-19 Pandemic: Implications for Hedging and Investments Strategies. Global Finance Journal, 51, 100692. https://doi.org/10.1016/j.gfj.2021.100692 Go to original source...
  97. Tse, Y. K. (1998). The Conditional Heteroscedasticity of the Yen-Dollar Exchange Rate. Journal of Applied Econometrics, 13(1), 49-55. Go to original source...
  98. Urquhart, A. (2016). The Inefficiency of Bitcoin. Economics Letters, 148, 80-82. https://doi.org/10.1016/j.econlet.2016.09.019 Go to original source...
  99. Wang, X., Lei, T., Liu, Z., et al. (2017). Long-Memory Behavior Analysis of China Stock Market Based on Hurst Exponent. In: 2017 29th Chinese Control and Decision Conference (CCDC), 1710-1712. Piscataway: Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/ccdc.2017.7978792 Go to original source...
  100. Xiu, J., Jin, Y. (2007). Empirical Study of ARFIMA Model Based on Fractional Differencing. Physica A: Statistical Mechanics and Its Applications, 377(1), 138-154. https://doi.org/10.1016/j.physa.2006.11.030 Go to original source...
  101. Zhang, H., Cai, G., Yang, D. (2020). The Impact of Oil Price Shocks on Clean Energy Stocks: Fresh Evidence from Multi-Scale Perspective. Energy, 196, 117099. https://doi.org/10.1016/j.energy.2020.117099 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.