Politická ekonomie 2022, 70(4):421-439 | DOI: 10.18267/j.polek.1362

Are Inflation Rates Stationary in the Western Balkan Countries? Evidence from Unit Root Tests

Saša Obradović ORCID...a, Nemanja Lojanica ORCID...a
a Faculty of Economics, University of Kragujevac, Kragujevac, Serbia

Monitoring of inflation rate dynamics is one of the most important tasks in order to identify the current economic conditions of the observed countries. The aim of this study is to examine the unit root properties of inflation in the Western Balkan countries. It also investigates the existence of structural breaks and nonlinearity. The time horizon encompasses the period 2006Q1-2020Q2. The results suggest that the inflation in Albania and Montenegro manifests a nonstationary process and structural breaks. The macroeconomic shocks will have more persistent effects on the inflation rate if it is characterized by nonstationarity. The inflation rates of Serbia and Bosnia and Herzegovina are characterized by nonlinear mean reverting behaviour. This implies less costly implementation of the proclaimed monetary strategy.

Keywords: Inflation, unit root, nonlinearity, structural break, nonstationarity
JEL classification: C22, E31, O52

Received: March 13, 2021; Revised: April 12, 2022; Accepted: April 21, 2022; Published: September 15, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Obradović, S., & Lojanica, N. (2022). Are Inflation Rates Stationary in the Western Balkan Countries? Evidence from Unit Root Tests. Politická ekonomie70(4), 421-439. doi: 10.18267/j.polek.1362
Download citation

References

  1. Arize, A. C., Malindretos, J. (2012). Nonstationarity and nonlinearity in inflation rate: Some further evidence. International Review of Economics & Finance, 24(4), 224-234, https://doi.org/10.1016/j.iref.2012.02.002 Go to original source...
  2. Bai, J., Perron, P. (1998). Estimating and Testing Linear Models with Multiple Structural Changes. Econometrica, 66(1), 47-78, https://doi.org/10.2307/2998540 Go to original source...
  3. Bai, J., Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 1-22, https://doi.org/10.1002/jae.659 Go to original source...
  4. Basher, S. A., Westerlund, J. (2008). Is there really a unit root in the inflation rate? More evidence from panel data models. Applied Economics Letters, 15(3), 161-164, https://doi.org/10.1080/13504850600706305 Go to original source...
  5. Bataa, E., Osborn, D. R., Sensier, M., et al. (2013). Structural Breaks in the International Dynamics of Inflation. The Review of Economics and Statistics, 95(2), 646-659, https://doi.org/10.1162/rest_a_00261 Go to original source...
  6. Caner, M., Hansen, B. E. (2001). Threshold Autoregression with a Unit Root. Econometrica, 69(6), 1555-1596, https://doi.org/10.1111/1468-0262.00257 Go to original source...
  7. Caporale, T., Paxton, J. (2013). Inflation stationarity during Latin American inflation: insights from unit root and structural break analysis. Applied Economics, 45(15), 2001-2010, https://doi.org/10.1080/00036846.2011.646067 Go to original source...
  8. Cecchetti, S. G., Debelle, G. (2006). Has the inflation process changed? Economic Policy, 21(46), 312-352, https://doi.org/10.1111/j.1468-0327.2006.00160.x Go to original source...
  9. Chang, T., Ranjbar, O., Tang, D. P. (2013). Revisiting the mean reversion of inflation rates for 22 OECD countries. Economic Modelling, 30(1), 245-252, https://doi.org/10.1016/j.econmod.2012.09.018 Go to original source...
  10. Charemza, W. W., Hristova, D., Burridge, P. (2005). Is inflation stationary? Applied Economics, 37(8), 901-903, https://doi.org/10.1080/00036840500076721 Go to original source...
  11. Chen, S.-W., Hsu, C.-S. (2016). Threshold, smooth transition and mean reversion in inflation: New evidence from European countries. Economic Modelling, 53(2), 23-36, https://doi.org/10.1016/j.econmod.2015.11.006 Go to original source...
  12. Çiçek, S., Akar, C. (2013). The asymmetry of inflation adjustment in Turkey. Economic Modelling, 31, 104-118, https://doi.org/10.1016/j.econmod.2012.11.026 Go to original source...
  13. Clemente, J., Montañés, A., Reyes, M. (1998). Testing for a unit root in variables with a double change in the mean. Economics Letters, 59(2), 175-182, https://doi.org/10.1016/s0165-1765(98)00052-4 Go to original source...
  14. Costantini, M., Lupi, C. (2007). An analysis of inflation and interest rates. New panel unit root results in the presence of structural breaks. Economics Letters, 95(3), 408-414, https://doi.org/10.1016/j.econlet.2006.11.016 Go to original source...
  15. Cuestas, J. C., Harrison, B. (2010). Inflation persistence and nonlinearities in Central and Eastern European countries. Economics Letters, 106(2), 81-83, https://doi.org/10.1016/j.econlet.2009.10.006 Go to original source...
  16. Cuestas, J. C., Garratt, D. (2011). Is real GDP per capita a stationary process? Smooth transitions, nonlinear trends and unit root testing. Empirical Economics, 41(3), 555-563, https://doi.org/10.1007/s00181-010-0389-0 Go to original source...
  17. Culver, S. E., Papell, D. H. (1997). Is there a unit root in the inflation rate? Evidence from sequential break and panel data models. Journal of Applied Econometrics, 12(4), 435-444, https://doi.org/10.1002/(sici)1099-1255(199707)12:43.0.co;2-1 Go to original source...
  18. Dickey, D. A., Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057-1072, https://doi.org/10.2307/1912517 Go to original source...
  19. Enders, W., Granger, C. W. J. (1998). Unit-Root Tests and Asymmetric Adjustment With an Example Using the Term Structure of Interest Rates. Journal of Business & Economic Statistics, 16(3), 304-311, https://doi.org/10.1080/07350015.1998.10524769 Go to original source...
  20. Enders, W., Lee, J. (2012). The flexible Fourier form and Dickey-Fuller type unit root tests. Economics Letters, 117(1), 196-199, https://doi.org/10.1016/j.econlet.2012.04.081 Go to original source...
  21. Harvey, D. I., Leybourne, S. J., Xiao, B. (2008). A powerful test for linearity when the order of integration is unknown. Studies in Nonlinear Dynamics & Econometrics, 12(3), 1-24, https://doi.org/10.2202/1558-3708.1582 Go to original source...
  22. Henry, Ó. T., Shields, K. (2004). Is there a unit root in inflation? Journal of Macroeconomics, 26(3), 481-500, https://doi.org/10.1016/j.jmacro.2003.03.003 Go to original source...
  23. IMF (2020). International Financial Statistics database. In: IMF Data [online]. Washington, D.C.: International Monetary Fund. [Retrieved 2020-09-27]. Available at: https://data.imf.org
  24. Kapetanios, G., Shin, Y., Snell, A. (2003). Testing for a unit root in the nonlinear STAR framework. Journal of Econometrics, 112(2), 359-379, https://doi.org/10.1016/s0304-4076(02)00202-6 Go to original source...
  25. Koenker, R., Xiao, Z. (2004). Unit Root Quantile Autoregression Inference. Journal of the American Statistical Association, 99(467), 775-787, https://doi.org/10.1198/016214504000001114 Go to original source...
  26. Lee, J., Strazicich, M. C. (2003). Minimum Lagrange multiplier unit root test with two structural breaks. The Review of Economics and Statistics, 85(4), 1082-1089, https://doi.org/10.1162/003465303772815961 Go to original source...
  27. Lee, J., Strazicich, M. C. (2013). Minimum LM unit root test with one structural break. Economics Bulletin, 33(4), 2483-2492.
  28. Malliaropulos, D. (2000). A note on nonstationarity, structural breaks, and the Fisher effect. Journal of Banking & Finance, 24(5), 695-707, https://doi.org/10.1016/s0378-4266(99)00064-3 Go to original source...
  29. Martins, L. F., Rodrigues, P. M. M. (2014). Testing for persistence change in fractionally integrated models: An application to world inflation rates. Computational Statistics & Data Analysis, 76, 502-522, https://doi.org/10.1016/j.csda.2012.07.021 Go to original source...
  30. Narayan, P. K., Narayan, S. (2010). Is there a unit root in the inflation rate? New evidence from panel data models with multiple structural breaks. Applied Economics, 42(13), 1661-1670, https://doi.org/10.1080/00036840701721596 Go to original source...
  31. Narayan, P. K., Popp, S. (2011). An application of a new seasonal unit root test to inflation. International Review of Economics and Finance, 20(4), 707-716, https://doi.org/10.1016/j.iref.2011.01.001 Go to original source...
  32. Newey, W. K., West, K. D. (1987). A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica, 55(3), 703-708, https://doi.org/10.2307/1913610 Go to original source...
  33. Ng, S., Perron, P. (2001). Lag length selection and the construction of unit root test with good size and power. Econometrica, 69(6), 1519-1554, https://doi.org/10.1111/1468-0262.00256 Go to original source...
  34. Nunes, L. C., Newbold, P., Kuan, C. (1997). Testing for Unit Roots with Breaks: Evidence on the Great Crash and the Unit Root Hypothesis Reconsidered. Oxford Bulletin of Economics and Statistics, 59(4), 435-448, https://doi.org/10.1111/1468-0084.00076 Go to original source...
  35. Osman, M. (2021). Persistence, mean reversion, and non-linearities in inflation rates in the GCC countries: an eclectic approach. Applied Economics, 53(8), 913-923, https://doi.org/10.1080/00036846.2020.1819950 Go to original source...
  36. Perron, P. (1989). The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis. Econometrica, 57(6), 1361-1401, https://doi.org/10.2307/1913712 Go to original source...
  37. Phillips, P. C. B., Perron, P. (1988). Testing for a Unit Root in Time Series Regressions. Biometrika, 75(2), 335-346, https://doi.org/10.1093/biomet/75.2.335 Go to original source...
  38. Sargent, T. J., Wallace, N. (1973). Rational Expectations and the Dynamics of Hyperinflation. International Economic Review, 14(2), 328-350, https://doi.org/10.2307/2525924 Go to original source...
  39. Sollis, R. (2009). A simple unit root test against asymmetric STAR nonlinearity with an application to real exchange rates in Nordic countries. Economic Modelling, 26(1), 118-125, https://doi.org/10.1016/j.econmod.2008.06.002 Go to original source...
  40. Tsong, C.-C., Lee, C.-F. (2011). Asymmetric inflation dynamics: Evidence from quantile regression analysis. Journal of Macroeconomics, 33(4), 668-680, https://doi.org/10.1016/j.jmacro.2011.08.003 Go to original source...
  41. Yellen, J. L., Akerlof, G. A. (2007). Stabilization policy: A Reconsideration. Economic Inquiry, 44(1), 1-22, https://doi.org/10.1093/ei/cbj002 Go to original source...
  42. Zhou, S. (2013). Nonlinearity and stationarity of inflation rates: evidence from the euro-zone countries. Applied Economics, 45(7), 849-856, https://doi.org/10.1080/00036846.2011.613774 Go to original source...
  43. Zivot, E., Andrews, D. W. K. (1992). Further evidence on the great crash, the oil-price shock, and the unit root hypothesis. Journal of Business and Economic Statistics, 10(3), 251-270, https://doi.org/10.1080/07350015.1992.10509904 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.