Politická ekonomie 2011, 59(2):184-204 | DOI: 10.18267/j.polek.780
Srovnání vybraných metod predikce změn trendu indexu PX
- VŠE v Praze.
Selected Methods of the Prediction of PX Index Trend Reversal
The paper is concerned with the use of several methods that can be useful from the point of view of trend reversal in financial time series. These methods are demonstrated on PX index time series during 2002-2009. The research itself is subdivided into four parts corresponding to individual analytical methods used. The first group contains the use of moving EGARCH(1,1) model to daily relative returns of PX index. The results obtained are indicative of the importance of negative parameter values, which can be considered as precursors of the trend reversal. The second group contains different moving characteristics that are able to signalize regime changes in certain time intervals. Particularly, the information related to intraday price variations proved to be useful. Third, selected price indicators from technical analysis were employed. Among them, Simple Moving Averages, Bollinger Bands, Relative Strength Index and Stochastic led to acceptable predictions. Last, the predictive ability of Artificial Neural Networks was tested with respect to different network structure and number of delayed values of explanatory variable. The results obtained here are promising, but further research in this direction is necessary.
Keywords: financial time series, trend reversal, technical analysis, artificial neural networks
JEL classification: C22, C45, C53
Zveřejněno: 1. duben 2011 Zobrazit citaci
Reference
- ACHELIS, S. 2000. Technical Analysis from A to Z. New York: McGraw-Hill, 2000. ISBN 978-0071363488.
- BISHOP, C. 1995. Neural Networks for Pattern Recognition. Oxford: Oxford University Press, 1995. ISBN 0-19-853864-2.
- BOLLERSLEV, T. 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics. 1986, Vol. 31, pp. 307-327.
Přejít k původnímu zdroji... - CIPRA, T. 2008. Finanční ekonometrie. Praha: Ekopress, 2008. ISBN 978-80-86929-43-9.
- ENGLE, R. 1982. Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica. 1982, Vol. 50, pp. 987-1007.
Přejít k původnímu zdroji... - FRANSES, P.; vanDIJK, D. 2006. Nonlinear Time Series Models in Empirical Finance. Cambridge: Cambridge University Press, 2006. ISBN 0-521-779650.
- FRANSES, P.; vanGRIENSVEN, K. 1998. Forecasting exchange rates using neural networks for technical trading rules. Studies in Nonlinear Dynamics and Econometrics. 1998, Vol. 2, pp. 109-116.
Přejít k původnímu zdroji... - GENCAY, R.; STENGOS, T. 1998. Moving average rules, volume and the predictability of security returns with feedforward networks. Journal of Forecasting. 1998, Vol. 17, No. 5-6, pp. 401-414.
Přejít k původnímu zdroji... - HAYKIN, S. 1999. Neural Networks: A Comprehensive Foundation. Upper Saddle River: Prentice Hall, 1999. ISBN 0-13-273350-1.
- KEDEM, B.; FOKIANOS, K. 2002. Regression Models for Time Series Analysis. New Jersey: Wiley, 2002. ISBN 0-471-36355-3.
Přejít k původnímu zdroji... - McNELIS, P. 2005. Neural Networks in Finance. Boston: Elsevier Academic Press, 2005. ISBN 0-12-485967-4.
- NELSON, D. B. 1991. Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica. 1991, Vol. 59, pp. 347-370.
Přejít k původnímu zdroji... - VÍŠKOVÁ, H. 1997. Technická analýza akcií. Praha: HZ, 1997. ISBN 80-86009-13-0.
Tento článek je publikován v režimu tzv. otevřeného přístupu k vědeckým informacím (Open Access), který je distribuován pod licencí Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), která umožňuje nekomerční distribuci, reprodukci a změny, pokud je původní dílo řádně ocitováno. Není povolena distribuce, reprodukce nebo změna, která není v souladu s podmínkami této licence.
