Politická ekonomie 2009, 57(3):305-322 | DOI: 10.18267/j.polek.686

Vizuální nelineární rekurentní analýza

Jan Kodera, Tran Van Quang
Centrum základního výzkumu pro dynamickou ekonomii a ekonometrii, Vysoká škola ekonomická v Praze.

Visual Recurrence Analysis and its Application

The aim of the article is to answer the question if the Czech stock market price dynamics is generated by non-linear deterministic dynamic process. To solve this complex problem requires using sophisticated computational operations to analyze huge amount of data input. To overcome this obstacle the visual recurrence analysis is applied in this article. This method enables visualization of the state space reconstructed from a time series in the so called recurrent plot. Further, it quantifies various geometric structures occurred in recurrent plots and gives us more exact information about the nature of the underlying process generating the time series. This analysis is then applied to the most liquid stock returns and the Czech stock market index PX series

Keywords: Czech Stock Market, nonlinear deterministic dynamics, Lorenz attractor, visual recurrence analysis, recurrence plot, quantitative recurrence analysis, finance time series
JEL classification: C33, G19

Zveřejněno: 1. červen 2009  Zobrazit citaci

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Kodera, J., & Van Quang, T. (2009). Vizuální nelineární rekurentní analýza. Politická ekonomie57(3), 305-322. doi: 10.18267/j.polek.686
Stáhnout citaci

Reference

  1. ANTONIOU A.; VORLOW C. 2000. Recurrence plot and financial time series analysis. Neural Network World, 10, s. 131-145.
  2. CAO, L. 1997. Practical method for determing the minimum embedding dimensions of scalar time series. Physica D, 1997, 110. Přejít k původnímu zdroji...
  3. ECKMANN, J.; KAMPHORST, S.; RUELLE, D. 1987. Recurrence plot of dynamical systém. Europhysics Letters, 1987, 4, s. 973-977. Přejít k původnímu zdroji...
  4. FABRETTI A.; AUSLOOSE M. 2005. Recurrence plot and recurrence quantification analysis technique for detectinga critical regime, example from financial market indices. International Journal of Modern Physics C, 2005, 16(5). Přejít k původnímu zdroji...
  5. HORÁK, J.; KRLÍN, L.; RAIDL, A. 2003. Deterministický chaos a jeho fyzikální aplikace. Praha : Academia, 2003.
  6. KANTZ, H.; SCHREIBER, T. 1997. Nonlinear Time Series Analysis. Cambridge : Cambridge University Press, 1997.
  7. KENNEL, M.; BROWN, R.; ABARBANEL, H. 1992. Determining embedding dimension for phasespace reconstruction using a geometrical construction. Physical Review A, 45(6). Přejít k původnímu zdroji...
  8. KORONOV, E. 2007. Visual Recurrence Analysis. [software] The VRA package.
  9. LORENZ, E. N. 1963. Deterministic nonperiodic flow. Journal of Atmospherical Science, 1963, 20, str. 130-141. Přejít k původnímu zdroji...
  10. MARVAN, N.; WESSEL, N.; MEYERFELDT, U.; SCHIRDEWAN, A.; KURTHS, J. 2002. Recurrence plot based measures of complexity and its application to heart rate variability data. Physical Review E, 2002, 66(2). Přejít k původnímu zdroji...
  11. SCHWABE, T. 2007. Recurrence quantification analysis of financial data. [Přednáška na semináři o ekonometrii], Riezlern, NĚmecko, červen 2007.
  12. SPROTT, J. C. 2003. Chaos and Time Series Analysis. New York : Oxford University Press, 2003.
  13. TAKENS, F. 1985. On the numerical determination of the dimension of and attractor. In BRAAKSMA, B. L. J.; BROER, H. W.; TAKENS, F., Dynamical Systems and Bifurcations. Lecture Notes in Math. Heidelberg - New York : Springer, 1985. Přejít k původnímu zdroji...
  14. TRAN, VAN QUANG 2007. Testování slabé formy hypotézy efektivního trhu na Českém akciovém trhu lineárními a nelineárními metodami. [Disertační práce] VŠE, Praha, 2007.
  15. TREŠL, J. 2008. Applications of Physics in Finance. In: Book of Abstracts of 7th International Confe-rence Aplimat 2008. Bratislava : Slovak University of Technology, 2008. ISBN 978-80-89313-03-7.
  16. TREŠL, J.; BLATNÁ, D. 2007. Dynamic Analysis of Selected European Stock Markets. Prague Economic Papers. 2007, roč. 16, č. 4, s. 291-302. Přejít k původnímu zdroji...
  17. VÁCHA, L.; VOŠVRDA, M. 2007. Wavelet Decomposition of the Financial Markets. Prague Economic Papers. 2007, roč. 16, č. 1, s. 38-54. Přejít k původnímu zdroji...
  18. VOŠVRDA, M.; BARUNÍK, J. 2008. Modelování krachů na kapitálových trzích: aplikace teorie stochastických katastrof. Politická ekonomie. 2008, roč. 56, č. 6, s. 759-771. Přejít k původnímu zdroji...
  19. ZBILUT, J.; WEBBER, C. 1992. Embeddings and delays as derived from quantification of recurrence plots. Physics Letters, 171, str. 199-203. Přejít k původnímu zdroji...

Tento článek je publikován v režimu tzv. otevřeného přístupu k vědeckým informacím (Open Access), který je distribuován pod licencí Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY NC ND 4.0), která umožňuje nekomerční distribuci, reprodukci a změny, pokud je původní dílo řádně ocitováno. Není povolena distribuce, reprodukce nebo změna, která není v souladu s podmínkami této licence.